1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Triss [41]
2 years ago
13

I need help answering these two questions

Mathematics
1 answer:
oksian1 [2.3K]2 years ago
8 0

Answer:

A and B

Step-by-step explanation:

Hopefully this helps

You might be interested in
I need help ASAP. Will give Brainliest.
Volgvan

Answer:

4,5

Step-by-step explanation:

Your welcome! :)

Good Luck!

8 0
3 years ago
Read 2 more answers
Brent and Lance leave a park on bicycles traveling at constant rates in opposite directions. After 2.5 hours, they are 85 miles
stealth61 [152]

Answer:

18 mph so B is correct 16+2= 18

8 0
3 years ago
Read 2 more answers
A rectangle measures 6 inches by 15 inches. If each dimension of the rectangle is dilated by a scale factor of 1/3 to create a n
Brrunno [24]
I think it is A. I could be wrong
4 0
3 years ago
Find the length of each side.
34kurt

Answer:

16.852

Step-by-step explanation:

All side lengths are the same in an octagon. What you do is take the diamater and multiply it by 0.383. Diamater is the radius doubled.

7 0
3 years ago
How do I find the integral<br> ∫10(x−1)(x2+9)dxint10/((x-1)(x^2+9))dx ?
defon
\int\frac{10}{(x-1)(x^2+9)}\ dx=(*)\\\\\frac{10}{(x-1)(x^2+9)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+9}=\frac{A(x^2+9)+(Bx+C)(x-1)}{(x-1)(x^2+9)}\\\\=\frac{Ax^2+9A+Bx^2-Bx+Cx-C}{(x-1)(x^2+9)}=\frac{(A+B)x^2+(-B+C)x+(9A-C)}{(x-1)(x^2+9)}\\\Updownarrow\\10=(A+B)x^2+(-B+C)x+(9A-C)\\\Updownarrow\\A+B=0\ and\ -B+C=0\ and\ 9A-C=10\\A=-B\ and\ C=B\to9(-B)-B=10\to-10B=10\to B=-1\\A=-(-1)=1\ and\ C=-1

(*)=\int\left(\frac{1}{x-1}+\frac{-x-1}{x^2+9}\right)\ dx=\int\left(\frac{1}{x-1}-\frac{x+1}{x^2+9}\right)\ dx\\\\=\int\frac{1}{x-1}\ dx-\int\frac{x+1}{x^2+9}\ dx=\int\frac{1}{x-1}-\int\frac{x}{x^2+9}\ dx-\int\frac{1}{x^2+9}\ dx=(**)\\\\\#1\ \int\frac{1}{x-1}\ dx\Rightarrow\left|\begin{array}{ccc}x-1=t\\dx=dt\end{array}\right|\Rightarrow\int\frac{1}{t}\ dt=lnt+C_1=ln(x-1)+C_1

\#2\ \int\frac{x}{x^2+9}\ dx\Rightarrow  \left|\begin{array}{ccc}x^2+9=u\\2x\ dx=du\\x\ dx=\frac{1}{2}\ du\end{array}\right|\Rightarrow\int\left(\frac{1}{2}\cdot\frac{1}{u}\right)\ du=\frac{1}{2}\int\frac{1}{u}\ du\\\\\\=\frac{1}{2}ln(u)+C_2=\frac{1}{2}ln(x^2+9)+C_2

\#3\ \int\frac{1}{x^2+9}\ dx=\int\frac{1}{x^2+3^2}\ dx=\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C_3\\\\therefore:\\\\\#1;\ \#2;\ \#3\Rightarrow(**)=ln(x-1)+C_1-\frac{1}{2}ln(x^2+9)+C_2-\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C_3

\boxed{=ln(x-1)-\frac{1}{2}ln(x^2+9)-\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C}



4 0
3 years ago
Other questions:
  • 19/25 in simplest form
    7·2 answers
  • In order to estimate the height of all students at your university, let's assume you have measured the height of all psychology
    15·1 answer
  • If a +2b+6c=-9 what is 12c+2a+4b
    5·1 answer
  • What is 209 rounded to nearest ten
    15·2 answers
  • Find the selling price
    5·1 answer
  • What is 72.96 divided by 3.8? Then explain how to place the decimal point in the quotient.
    8·1 answer
  • What is the longest pipe that could be shipped in a box that measures 3ft by 4 ft by 8 ft?
    7·1 answer
  • What is the area? Please help me I really need it!
    11·1 answer
  • Which expression can be used to convert 100 USD to Japanese yen?
    15·1 answer
  • Asha bought 60 fruit baskets.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!