A product of two (or more) factor can be zero if and only if at least one of the factors is zero.
In other words, you cannot multiply two non-zero real numbers, and have zero as a result.
So, if we want the product of these two factors to be zero, at least one of them has to be zero.
The first factor is zero if

The second factor is zero if

I cant see the image but just wanted to lyk u should use the mathaway app it gives you answers and an explanation instantly
First set everything to 0.

Giving you A= 1 , B= 1 and C= -5
Then input everything into the quadratic formula and either solve by hand or use a calculator.
Note exact values are found by hand, decimals are found using a calculator.
Answer:
The equation of the quadratic graph is f(x)= - (1/8) (x-3)^2 + 3 (second option)
Step-by-step explanation:
Focus: F=(3,1)=(xf, yf)→xf=3, yf=1
Directrix: y=5 (horizontal line), then the axis of the parabola is vertical, and the equation has the form:
f(x)=[1 / (4p)] (x-h)^2+k
where Vertex: V=(h,k)
The directix y=5 must intercept the axis of the parabola at the point (3,5), and the vertex is the midpoint between this point and the focus:
Vertex is the midpoint between (3,5) and (3,1):
h=(3+3)/2→h=6/2→h=3
k=(5+1)/2→k=6/2→k=3
Vertex: V=(h,k)→V=(3,3)
p=yf-k→p=1-3→p=-2
Replacing the values in the equation:
f(x)= [ 1 / (4(-2)) ] (x-3)^2 + 3
f(x)=[ 1 / (-8) ] (x-3)^2 + 3
f(x)= - (1/8) (x-3)^2 + 3
Answer:
x^2+15x+7
Step-by-step explanation:
There are no like terms.