
<u>the </u><u>given </u><u>expression</u><u> </u><u>can </u><u>be </u><u>solved </u><u>as </u><u>follows </u><u>~</u>

<u>taking </u><u>LCM </u><u>both </u><u>the </u><u>sides </u><u>,</u>

<u>on </u><u>cross </u><u>multiplying </u><u>,</u>

<u>let's</u><u> </u><u>now </u><u>gather </u><u>the </u><u>like </u><u>terms </u><u>at </u><u>either </u><u>sides </u><u>of </u><u>the </u><u>equation</u><u> </u><u>~</u>

<u>on </u><u>simplifying </u><u>the </u><u>equation</u><u> </u><u>,</u>

hope helpful ~
Step-by-step explanation:

Answer: -$6,500
Step-by-step explanation:
Here we could , use the arithmetic progression where
T(2020 - 2010) = a + ( n - 1 )d
T10 = a + ( 10 - 1 )d --------------- 1
a = $25,000, n = 10 and d = 14% of $25,000 = $3,500 the common difference.
Note since it decreases the common difference d = -$3,500.
Now substitute for the values in the equation above.
T10 = 25,000 + 9 x -3,500
= $25,000 - $31,500
= -$6,500 (deficit )
Answer:
194
Step-by-step explanation:
t63 = t1 + (n - 1)(d)
= 8 + (63 - 1)(3)
= 8 + (62)(3)
= 8 + 186
= 194