Answer:
There is no value in M
Step-by-step explanation:
The equation is undefined.
Answer:
The degrees of freedom is 11.
The proportion in a t-distribution less than -1.4 is 0.095.
Step-by-step explanation:
The complete question is:
Use a t-distribution to answer this question. Assume the samples are random samples from distributions that are reasonably normally distributed, and that a t-statistic will be used for inference about the difference in sample means. State the degrees of freedom used. Find the proportion in a t-distribution less than -1.4 if the samples have sizes 1 = 12 and n 2 = 12 . Enter the exact answer for the degrees of freedom and round your answer for the area to three decimal places. degrees of freedom = Enter your answer; degrees of freedom proportion = Enter your answer; proportion
Solution:
The information provided is:

Compute the degrees of freedom as follows:


Thus, the degrees of freedom is 11.
Compute the proportion in a t-distribution less than -1.4 as follows:


*Use a <em>t</em>-table.
Thus, the proportion in a t-distribution less than -1.4 is 0.095.
The measure of angle ABC is 45°
<em><u>Explanation</u></em>
Vertices of the triangle are: A(7, 5), B(4, 2), and C(9, 2)
According to the diagram below....
Length of the side BC (a) 
Length of the side AC (b) 
Length of the side AB (c) 
We need to find ∠ABC or ∠B . So using <u>Cosine rule</u>, we will get...

So, the measure of angle ABC is 45°
The variable <em>x </em>is equal to 0.5