Answer:
Explanation:
Using Hooke's law
Elastic potential energy = 1/2 K x²
K is elastic constant of the spring
x is the extension of the spring
a) The elastic potential energy when the spring is compressed twice as much Uel = 1/2 k (2x₀) ² = 4 (1/2 kx₀²)= 4 U₀
b) when is compressed half as much Uel = 1/2 k
=
( U₀)
c) make x₀ subject of the formula in the equation for elastic potential
x₀ =
x, the amount it will compressed to tore twice as much energy = 
x = √2 x₀
d) x₁, the new length it must be compressed to store half as much energy = 
x₁ =
x₀
Answer:
True
Explanation:
when the object is larger , the inertia of the object is larger so its tendency to change its state of motion is reduced is reduced.
Answer:
(a)2.7 m/s
(b) 5.52 m/s
Explanation:
The total of the system would be conserved as no external force is acting on it.
Initial momentum = final momentum
⇒(4.30 g × 943 m/s) + (730 g × 0) = (4.30 g × 484 m/s) + (730 g × v)
⇒ 730 ×v = (4054.9 - 2081.2) =1973.7
⇒v=2.7 m/s
Thus, the resulting speed of the block is 2.7 m/s.
(b) since, the momentum is conserved, the speed of the bullet-block center of mass would be constant.

Thus, the speed of the bullet-block center of mass is 5.52 m/s.
Answer:
Time taken for trip = 12.74 hour (Approx)
Explanation:
Given:
Distance of trip = 710-mi
Average speed for the trip = 55.7 mi/h
Find:
Time taken for trip = ?
Computation:
⇒ Time = Distance / Speed
⇒ Time taken for trip = Distance of trip / Average speed for the trip
⇒ Time taken for trip = 710-mi / 55.7 mi/h
⇒ Time taken for trip = 12.74 hour (Approx)
Take east to be the positive direction. Then the resultant force from adding <em>F</em>₁ and <em>F</em>₂ is
<em>F</em>₁ + <em>F</em>₂ = (-45 N) + 63 N = 18 N
which is positive, so it's directed east.
To this we add a third force <em>F</em>₃ such that the resultant is 12 N pointing west, making it negative, so that
18 N + <em>F</em>₃ = -12 N
<em>F</em>₃ = -30 N
So <em>F</em>₃ has a magnitude of 30 N and points west.