Answer:
The work flow required by the compressor = 100.67Kj/kg
Explanation:
The solution to this question is obtained from the energy balance where the initial and final specific internal energies and enthalpies are taken from A-17 table from the given temperatures using interpolation .
The work flow can be determined using the equation:
M1h1 + W = Mh2
U1 + P1alph1 + ◇U + Workflow = U2 + P2alpha2
Workflow = P2alpha2 - P1alpha1
Workflow = (h2 -U2) - (h1 - U1)
Workflow = ( 684.344 - 491.153) - ( 322.483 - 229.964)
Workflow = ( 193.191 - 92.519)Kj/kg
Workflow = 100.672Kj/kg
Answer:
Increases.
Explanation:
The electric potential increases when the two positive charges of same magnitude bring close to one charge to another because there is repulsive force between them due to same charge and when the two opposite charges move away from each other, the potential energy decreases. When two opposite charges are brought closer together, electric potential energy decreases while on the other hand, when we move opposite charges apart from each other than the work done against the attractive force that leads to an increase in electric potential energy.
Answer:
Heat Transfer
Explanation:
This is called heat transfer. Heat transfer is the process in which energy flows from a matter that is higher in heat to a matter that is cooler, until the two matters reach the same temperature.
Answer:
The x represents the reference point on a motion map
Explanation:
-Motion maps are another way to represent the motion of an object. (other representations are graphical and mathematical models)
Explanation:
Given that,
A person walks 9.0 km directly east and then turns left and heads directly north for 12.0 km.
We need to find his displacement from the starting position.
We know that,
Displacement = shortest path covered

For direction,

Hence, this is the required solution.