The question is incomplete. The complete question is :
A plate of uniform areal density
is bounded by the four curves:




where x and y are in meters. Point
has coordinates
and
. What is the moment of inertia
of the plate about the point
?
Solution :
Given :




and
,
,
.
So,

, 



![$I=2 \int_1^2 \left( \left[ (x-1)^2y+\frac{(y+2)^3}{3}\right]_{-x^2+4x-5}^{x^2+4x+6}\right) \ dx$](https://tex.z-dn.net/?f=%24I%3D2%20%5Cint_1%5E2%20%5Cleft%28%20%5Cleft%5B%20%28x-1%29%5E2y%2B%5Cfrac%7B%28y%2B2%29%5E3%7D%7B3%7D%5Cright%5D_%7B-x%5E2%2B4x-5%7D%5E%7Bx%5E2%2B4x%2B6%7D%5Cright%29%20%5C%20dx%24)



So the moment of inertia is
.
Answer:
When something is transparent, it means that it allows light to pass through or is see-through . For example:
1) glass
2) air
3) some plastics
Explanation:
London dispersion forces will form between non-polar molecules(polar ) that are symmetrical like O₂, H₂, Cl₂ and noble gases.
- The attraction here is because non-polar molecules becomes polar due to the constant motion of its electrons.
- This lead to an uneven charge distribution at an instant.
- A temporary dipole or instantaneous dipole forms.
- The temporary dipole can induce neighboring molecules to be distorted and forms dipoles as well.
- This forms london dispersion forces.
Learn more:
Intermolecular forces brainly.com/question/10602513
#learnwithBrainly
Answer:
Neon (Ne), chemical element, inert gas of Group 18 (noble gases) of the periodic table, used in electric signs and fluorescent lamps. Colourless, odourless, tasteless, and lighter than air, neon gas occurs in minute quantities in Earth's atmosphere and trapped within the rocks of Earth's crust.
Explanation:
I am smart