1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew11 [14]
3 years ago
12

Help if u know Spanish plz asap

Mathematics
1 answer:
iris [78.8K]3 years ago
3 0

Answer:

No thanks

Step-by-step explanation:

You might be interested in
Can help me complete this problem please :c
FrozenT [24]

Answer:

112.5 deg

Step-by-step explanation:

First we find the area of the entire circle.

A = pi * r^2

A = pi * (4 m)^2

A = 16pi m^2

The entire circle has area = 16pi m^2.

The sector has area 5pi m^2.

Now we find the fraction the area of the sector is of the entire circle.

fraction = (5pi m^2)/(16pi m^2) = 5/16 = 0.3125

The full circle has a central angle of 360 deg, the entire circle.

The measure of the central angle of the arc of the sector is the same fraction of the entire circle.

measure of sector angle = 0.3125 * 360 deg = 112.5 deg

4 0
3 years ago
Read 2 more answers
Find the sum for:<br><br> (3x^2+4x−1)+(−2x^2−3x+2)=
Phantasy [73]

Answer:

x^2+x+1

Step-by-step explanation:

(3x^2+4x−1)+(−2x^2−3x+2)

Combine like terms

3x^2-2x^2+4x-3x-1+2

x^2+x+1

7 0
2 years ago
PLEASE HELP PRE CAL!!
Len [333]

Answer:

Width = 2x²

Length = 7x² + 3

Step-by-step explanation:

∵ The area of a rectangle is 14x^{4}+6x^{2}

∵ Its width is the greatest common monomial factor of 14x^{4} and 6x²

- Let us find the greatest common factor of 14 , 6 and x^{4} , x²

∵ The factors of 14 are 1, 2, 7, 14

∵ The factors of 6 are 1, 2, 3, 6

∵ The common factors of 14 and 6 are 1, 2

∵ The greatest one is 2

∴ The greatest common factor of 14 and 6 is 2

- The greatest common factor of monomials is the variable with

   the smallest power

∴ The greatest common factor of x^{4} and  x² is x²

∴ The greatest common monomial factor of  14x^{4} and 6x² is 2x²

∴ The width of the rectangle is 2x²

To find the length divide the area by the width

∵ The area = 14x^{4}+6x^{2}

∵ The width = 2x²

∴ The length = ( 14x^{4}+6x^{2}) ÷ (2x²)

∵  14x^{4} ÷ 2x² = 7x²

∵ 6x² ÷ 2x² = 3

∴ ( 14x^{4}+6x^{2}) ÷ (2x²) = 7x² + 3

∴ The length of the rectangle is 7x² + 3

8 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Telling of a classroom is 32 feet. The width is 75% of the lengt. Find the area of the classroom in square feet
Evgesh-ka [11]
The area of the classroom is 768 square feet
7 0
3 years ago
Other questions:
  • Bradley invested an average of $550 per month since age 49 in various securities for his retirement savings. His investments ave
    8·1 answer
  • How many nickels are there in seventeen dollars?
    15·1 answer
  • Question 11 (1 point)
    8·2 answers
  • Factorise the following quadratic equations ​
    9·2 answers
  • Cube root of b to the 27 power​
    15·1 answer
  • Santiago walked 500 m
    11·1 answer
  • Please please help i need to find the area
    5·1 answer
  • Evaluate f (x) = -4x + 7 when x = 2 and x = -2
    15·1 answer
  • What is the value of pi based on the equation for the best-fit line?.
    12·1 answer
  • Solve the simultaneous equations<br> 3x + y = 25<br> 2x – y = 10
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!