Answer:

Step-by-step explanation:
1) First, find the slope of the line. Use the slope formula
. Pick two points on the line and substitute their x and y values into the formula, then solve. I used the points (-5,-4) and (0,-6):
So, the slope of the line is
.
2) Next, use the point-slope formula
to write the equation of the line in point-slope form. (From there, we can convert it to slope-intercept form.) Substitute values for the
,
and
into the formula.
Since
represents the slope, substitute
in its place. Since
and
represent the x and y values of one point on the line, pick any point on the line (any one is fine, it will equal the same thing at the end) and substitute its x and y values in those places. (I chose (0,-6), as seen below.) Then, with the resulting equation, isolate y to put the equation in slope-intercept form:

Answer:
is it AA..
I have no idea what to do how...
Answer:
The slope of the line that contains diagonal OE will be = -3/2
Step-by-step explanation:
We know the slope-intercept form of the line equation
y = mx+b
Where m is the slope and b is the y-intercept
Given the equation of the line that contains diagonal HM is y = 2/3 x + 7
y = 2/3 x + 7
comparing the equation with the slope-intercept form of the line equation
y = mx+b
Thus, slope = m = 2/3
- We know that the diagonals are perpendicular bisectors of each other.
As we have to determine the slope of the line that contains diagonal OE.
As the slope of the line that contains diagonal HM = 2/3
We also know that a line perpendicular to another line contains a slope that is the negative reciprocal of the slope of the other line.
Therefore, the slope of the line that contains diagonal
OE will be = -1/m = -1/(2/3) = -3/2
Hence, the slope of the line that contains diagonal OE will be = -3/2
Answer:


Step-by-step explanation:
Given
See attachment for graph
Solving (a): Increasing interval
To do this, we simply identify the interval at which the value of the graph increases.
The value has an increased interval between -2 and 1.5 (of the x-axis).
Hence, the increasing interval is:

Solving (b): Decreasing interval
To do this, we simply identify the interval at which the value of the graph decreases.
The value has decreased intervals between - infinity and -2 and also 1.5 and infinity (of the x-axis).
Hence, the decreasing interval is:

Answer:
your answer is c
Step-by-step explanation: