I'm not 100% sure but I think the answer is 60.4, because you multiply 3.20 by 10, to get 32 - 9 = 23, then subtract 23 from 83.4. Hope this helps you, and good luck!!!
Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.

where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]
Answer:
If the canoe heads upstream the speed is zero. And directly across the river is 8.48 [km/h] towards southeast
Explanation:
When the canoe moves upstream, it is moving in the opposite direction of the normal river current. Since the velocities are vector (magnitude and direction) we can sum each vector:
Vr = velocity of the river = 6[km/h}
Vc = velocity of the canoe = -6 [km/h]
We take the direction of the river as positive, therefore other velocity in the opposite direction will be negative.
Vt = Vr + Vc = 6 - 6 = 0 [km/h]
For the second question, we need to make a sketch of the canoe and we are watching this movement at a high elevation. So let's say that the canoe is located in point 0 where it is located one of the river's borders.
So we are having one movement to the right (x-direction). And the movement of the river to the south ( - y-direction).
Since the velocities are vector we can sum each vector, so using the Pythagoras theorem we have:
![Vt = \sqrt{(6)^{2} +(-6)^{2} } \\Vt=8.48[km/h]](https://tex.z-dn.net/?f=Vt%20%3D%20%5Csqrt%7B%286%29%5E%7B2%7D%20%2B%28-6%29%5E%7B2%7D%20%7D%20%5C%5CVt%3D8.48%5Bkm%2Fh%5D)
<h2>Question:</h2>
In this circuit the resistance R1 is 3Ω, R2 is 7Ω, and R3 is 7Ω. If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resistance be?
Answer:
9.1Ω
Explanation:
The circuit diagram has been attached to this response.
(i) From the diagram, resistors R1 and R2 are connected in parallel to each other. The reciprocal of their equivalent resistance, say Rₓ, is the sum of the reciprocals of the resistances of each of them. i.e

=>
------------(i)
From the question;
R1 = 3Ω,
R2 = 7Ω
Substitute these values into equation (i) as follows;


Ω
(ii) Now, since we have found the equivalent resistance (Rₓ) of R1 and R2, this resistance (Rₓ) is in series with the third resistor. i.e Rₓ and R3 are connected in series. This is shown in the second image attached to this response.
Because these resistors are connected in series, they can be replaced by a single resistor with an equivalent resistance R. Where R is the sum of the resistances of the two resistors: Rₓ and R3. i.e
R = Rₓ + R3
Rₓ = 2.1Ω
R3 = 7Ω
=> R = 2.1Ω + 7Ω = 9.1Ω
Therefore, the combination of the resistors R1, R2 and R3 can be replaced with a single resistor with an equivalent resistance of 9.1Ω
Answer:
E = 16.464 J
Explanation:
Given that,
Mass of tetherball, m = 0.8 kg
It is hit by a child and rises 2.1 m above the ground, h = 21. m
We need to find the maximum gravitational potential energy of the ball. The formula for the gravitational potential energy is given by :
E = mgh
g is acceleration due to gravity
E = 0.8 kg × 9.8 m/s² × 2.1 m
= 16.464 J
So, the maximum potential energy of the ball is 16.464 J.