Answer: EDIT: the answer is 4 3/12
Step-by-step explanation:
Hope this helps ya, sweetie!
If you ever need help ask people here on Brainly or contact me by my mail at
tutorbydemand05 at g****.com
Have a marvelous day!! {:0)
Answer:
y = -2x^2 - 4x - 1
Step-by-step explanation:
We can see that the graph passes through (-2, -1), (-1, 1) and (0, -1).
Let's solve
ax^2 + bx + c = y
a(-2)^2 + b(-2) + c = -1
4a - 2b + c = -1
a(-1)^2 + b(-1) + c = 1
a - b + c = 1
a0^2 + b0 + c = -1
c = -1
we got c = -1 so we input it into the other 2
4a - 2b - 1 = -1
4a - 2b = 0
2a - b = 0
2a = b
a - b - 1 = 1
a - b = 2
a = b + 2
Let's input b = 2a
a = 2a + 2
-a = 2
a = -2
b = 2a = 2*(-2) = -4
c = -1
y = -2x^2 - 4x - 1
Given :
An online store sells only two types of bandanas: cotton bandanas and silk bandanas. Cotton bandanas cost $7 each, and silk bandanas cost $11 each.
Mrs. Tran spent a total of $93 on bandanas at this store.
To Find :
How many cotton bandanas did Mrs. Tran buy.
Solution :
Let, number of cotton and silk bandanas buys are x and y respectively.
So, 7x + 11y = 93
x = (93 - 11y)/ 7
Putting y = 1 , x = 82/7 ( not possible since x can only be positive integer )
Putting y = 4 , x = 7
Therefore, Mrs . Tran will buy 7 cotton bandanas.
Hence, this is the required solution.
Step-by-step explanation:
<h2>Length of x is 98.2 m</h2><h2 /><h2>Step-by-step explanation:</h2><h2 /><h2>Step 1:</h2><h2 /><h2>Use the trigonometric ratio tan 27° to find the common side of both the right angled triangles.</h2><h2 /><h2>tan 27° = opposite side/adjacent side =</h2><h2 /><h2>opposite side/9</h2><h2 /><h2>Opposite side = 9 tan 27° 9 x 3.27 =</h2><h2 /><h2>-29.46 m</h2><h2 /><h2>Step 2:</h2><h2 /><h2>Use this side and trigonometric ratio cosine to find the value of x.</h2><h2 /><h2>cos 49° = adjacent side/x = -29.46/x</h2><h2 /><h2>x = -29.46/cos 49° -29.46/0.30</h2><h2 /><h2>= 98.2 m (negative value neglected)</h2><h2 /><h2>
<em><u>Please</u></em><em><u> </u></em><em><u>mark</u></em><em><u> </u></em><em><u> </u></em><em><u>me </u></em><em><u>Brainlist.</u></em></h2>