3 rows of 12
9 rows of 4
2 rows of 18
6 rows of 6
Answer:
no real answer
Step-by-step explanation:
distribute the -4 and combine all of the like terms on the left side = r-8-4r, then -8-3r
then we have 7-3r=-8-3r
from here, we can already tell that there's no real answer. this is because the two -3r will cancel, leaving no variable.
since 7 doesn't equal -8, there is no answer.
if, for example, the value on both sides of the equal sign were the same after the variable was eliminated, then your answer would be all real numbers
Answer:
Step-by-step explanation:
Solution by substitution method
3x+5y=7
and 4x-y=5
Suppose,
3x+5y=7→(1)
and 4x-y=5→(2)
Taking equation (2), we have
4x-y=5
⇒y=4x-5→(3)
Putting y=4x-5 in equation (1), we get
3x+5y=7
⇒3x+5(4x-5)=7
⇒3x+20x-25=7
⇒23x-25=7
⇒23x=7+25
⇒23x=32
⇒x=32/23
→(4)
Now, Putting x=32/23
in equation (3), we get
y=4x-5
⇒y=4(32/23)-5
⇒y=(128-115)/23
⇒y=13/23
∴y=13/23 and x=32/23
Answer: option d.
Step-by-step explanation:
To solve this problem you must keep on mind the properties of logarithms:

Therefore, knowing the properties, you can write the expression gven in the problem as shown below:

Then, the answer is the option d.
Answer:
a. P(x = 0 | λ = 1.2) = 0.301
b. P(x ≥ 8 | λ = 1.2) = 0.000
c. P(x > 5 | λ = 1.2) = 0.002
Step-by-step explanation:
If the number of defects per carton is Poisson distributed, with parameter 1.2 pens/carton, we can model the probability of k defects as:

a. What is the probability of selecting a carton and finding no defective pens?
This happens for k=0, so the probability is:

b. What is the probability of finding eight or more defective pens in a carton?
This can be calculated as one minus the probablity of having 7 or less defective pens.



c. Suppose a purchaser of these pens will quit buying from the company if a carton contains more than five defective pens. What is the probability that a carton contains more than five defective pens?
We can calculate this as we did the previous question, but for k=5.
