1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna35 [415]
3 years ago
6

Please help, picture attached.

Mathematics
1 answer:
lawyer [7]3 years ago
8 0

Answer:

If angle dgf as an angle of 108

that means that the equation would look like this x + 4x-2=108

= 5x-2=108

then you solve for x

5x=110

110/5 = 22 = x

hope that answers your question

Step-by-step explanation:

You might be interested in
100%<br> &amp;<br> There are 16 girls and 18 boys in a class. The teacher chooses a student's name at<br> What is the probabilit
Mariulka [41]

Answer:a

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Please I need help
lesantik [10]
3yds or 5yds is the closest
5 0
3 years ago
Helpppppppppppppppppppppppppppppppp
Sonbull [250]
The equation is y=(x-7)^2+7.

We are looking for a function with a vertex above the x-axis and a function that opens upward (has coefficient a > 0).

The first function opens downward and intersects the x-axis. The second function has a vertex below the x-axis. The third function satisfies our requirements. The fourth function has a vertex on the x-axis.

We can solve this algebraically with the knowledge that the real solutions of a quadratic are its x-intercepts. If there are no x-intercepts (because it lies entirely above or below the x-axis), then there are no real solutions. This is true when the discriminant b^2-4ac \ \textless \  0. You can see that from the quadratic formula. This holds true for both answers A and C, so to find the correct one, we remember that when the coefficient a of the x^2 term is positive, the graph opens upwards, so we choose C.
5 0
3 years ago
Read 2 more answers
Let A be a given matrix below. First, find the eigenvalues and their corresponding eigenspaces for the following matrices. Then,
Rama09 [41]

It looks like given matrices are supposed to be

\begin{array}{ccccccc}\begin{bmatrix}3&2\\2&3\end{bmatrix} & & \begin{bmatrix}1&-1\\2&-1\end{bmatrix} & & \begin{bmatrix}1&2&3\\0&2&3\\0&0&3\end{bmatrix} & & \begin{bmatrix}3&1&1\\1&3&1\\1&1&3\end{bmatrix}\end{array}

You can find the eigenvalues of matrix A by solving for λ in the equation det(A - λI) = 0, where I is the identity matrix. We also have the following facts about eigenvalues:

• tr(A) = trace of A = sum of diagonal entries = sum of eigenvalues

• det(A) = determinant of A = product of eigenvalues

(a) The eigenvalues are λ₁ = 1 and λ₂ = 5, since

\mathrm{tr}\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3 + 3 = 6

\det\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3^2-2^2 = 5

and

λ₁ + λ₂ = 6   ⇒   λ₁ λ₂ = λ₁ (6 - λ₁) = 5

⇒   6 λ₁ - λ₁² = 5

⇒   λ₁² - 6 λ₁ + 5 = 0

⇒   (λ₁ - 5) (λ₁ - 1) = 0

⇒   λ₁ = 5 or λ₁ = 1

To find the corresponding eigenvectors, we solve for the vector v in Av = λv, or equivalently (A - λI) v = 0.

• For λ = 1, we have

\begin{bmatrix}3-1&2\\2&3-1\end{bmatrix}v = \begin{bmatrix}2&2\\2&2\end{bmatrix}v = 0

With v = (v₁, v₂)ᵀ, this equation tells us that

2 v₁ + 2 v₂ = 0

so that if we choose v₁ = -1, then v₂ = 1. So Av = v for the eigenvector v = (-1, 1)ᵀ.

• For λ = 5, we would end up with

\begin{bmatrix}-2&2\\2&-2\end{bmatrix}v = 0

and this tells us

-2 v₁ + 2 v₂ = 0

and it follows that v = (1, 1)ᵀ.

Then the decomposition of A into PDP⁻¹ is obtained with

P = \begin{bmatrix}-1 & 1 \\ 1 & 1\end{bmatrix}

D = \begin{bmatrix}1 & 0 \\ 0 & 5\end{bmatrix}

where the n-th column of P is the eigenvector associated with the eigenvalue in the n-th row/column of D.

(b) Consult part (a) for specific details. You would find that the eigenvalues are i and -i, as in i = √(-1). The corresponding eigenvectors are (1 + i, 2)ᵀ and (1 - i, 2)ᵀ, so that A = PDP⁻¹ if

P = \begin{bmatrix}1+i & 1-i\\2&2\end{bmatrix}

D = \begin{bmatrix}i&0\\0&i\end{bmatrix}

(c) For a 3×3 matrix, I'm not aware of any shortcuts like above, so we proceed as usual:

\det(A-\lambda I) = \det\begin{bmatrix}1-\lambda & 2 & 3 \\ 0 & 2-\lambda & 3 \\ 0 & 0 & 3-\lambda\end{bmatrix} = 0

Since A - λI is upper-triangular, the determinant is exactly the product the entries on the diagonal:

det(A - λI) = (1 - λ) (2 - λ) (3 - λ) = 0

and it follows that the eigenvalues are λ₁ = 1, λ₂ = 2, and λ₃ = 3. Now solve for v = (v₁, v₂, v₃)ᵀ such that (A - λI) v = 0.

• For λ = 1,

\begin{bmatrix}0&2&3\\0&1&3\\0&0&2\end{bmatrix}v = 0

tells us we can freely choose v₁ = 1, while the other components must be v₂ = v₃ = 0. Then v = (1, 0, 0)ᵀ.

• For λ = 2,

\begin{bmatrix}-1&2&3\\0&0&3\\0&0&1\end{bmatrix}v = 0

tells us we need to fix v₃ = 0. Then -v₁ + 2 v₂ = 0, so we can choose, say, v₂ = 1 and v₁ = 2. Then v = (2, 1, 0)ᵀ.

• For λ = 3,

\begin{bmatrix}-2&2&3\\0&-1&3\\0&0&0\end{bmatrix}v = 0

tells us if we choose v₃ = 1, then it follows that v₂ = 3 and v₁ = 9/2. To make things neater, let's scale these components by a factor of 2, so that v = (9, 6, 2)ᵀ.

Then we have A = PDP⁻¹ for

P = \begin{bmatrix}1&2&9\\0&1&6\\0&0&2\end{bmatrix}

D = \begin{bmatrix}1&0&0\\0&2&0\\0&0&3\end{bmatrix}

(d) Consult part (c) for all the details. Or, we can observe that λ₁ = 2 is an eigenvalue, since subtracting 2I from A gives a matrix of only 1s and det(A - 2I) = 0. Then using the eigen-facts,

• tr(A) = 3 + 3 + 3 = 9 = 2 + λ₂ + λ₃   ⇒   λ₂ + λ₃ = 7

• det(A) = 20 = 2 λ₂ λ₃   ⇒   λ₂ λ₃ = 10

and we find λ₂ = 2 and λ₃ = 5.

I'll omit the details for finding the eigenvector associated with λ = 5; I ended up with v = (1, 1, 1)ᵀ.

• For λ = 2,

\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}v = 0

tells us that if we fix v₃ = 0, then v₁ + v₂ = 0, so that we can pick v₁ = 1 and v₂ = -1. So v = (1, -1, 0)ᵀ.

• For the repeated eigenvalue λ = 2, we find the generalized eigenvector such that (A - 2I)² v = 0.

\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}^2 v = \begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}v = 0

This time we fix v₂ = 0, so that 3 v₁ + 3 v₃ = 0, and we can pick v₁ = 1 and v₃ = -1. So v = (1, 0, -1)ᵀ.

Then A = PDP⁻¹ if

P = \begin{bmatrix}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{bmatrix}

D = \begin{bmatrix}5&0&0\\0&2&0\\0&2&2\end{bmatrix}

3 0
3 years ago
if one adult is randomly chosen from the group, what is the probability that the adult does not use a cell phone app for shoppin
Salsk061 [2.6K]

Answer:

1/100

Step-by-step explanation:

The answer is 1/100 because we don't know how many people are in the group but do know that only 1 person has been taken from the group and the probability will be 1 out of how many people are in the group so we just put 100 there as we don't know how many people are in the group.

<em>Ps: Sorry if this is wrong, this is just a guess.</em>

5 0
2 years ago
Other questions:
  • How do you put 10×(2.5 +13.5) in word form
    6·2 answers
  • Gordy is a goalie for a neighborhood soccer team.He played in 65% of the 20 games this season.In how man ygames did he not play?
    13·2 answers
  • What is the sum of the finite arithmetic series 4+8+12+16...+76
    9·2 answers
  • Solve the value of y for the given values of x: 4x = 3y - 7; x= 4,5,6
    6·2 answers
  • Simplify <br> (^3)x4<br> Easy 30 points
    6·2 answers
  • On a test with 25 problems, grace got 88% correct.How many promblems did Grace get right.?
    8·1 answer
  • Find the slope of the line passing through the points using the slope formula
    6·1 answer
  • The ratio of children to adults at the football game was 23. If there were 140 children at the football game,
    14·1 answer
  • If y = kx, and x = 3 and y = 15, calculate k.
    15·2 answers
  • 9. The distance of the point P(-3,-4) from the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!