one substance becomes two new substances
Answer:
2. Igneous rocks can weather, creating sediments that form sedimentary rocks
Explanation:
Sedimentary rocks are formed from Igneous rocks when rocks are broken down by weathering.
Answer:
a solution color becoming less intense due to dilution- is not an evidence of a chemical reaction
bubbles (gas formation) - evidence of a chemical reaction
explosion or fire - evidence of a chemical reaction
changes in color- evidence of a chemical reaction
precipitation- evidence of a chemical reaction
changes in temperature - evidence of a chemical reaction
a solid liquifying - is not an evidence of a chemical reaction
solution colors mixing - is not an evidence of a chemical reaction
Explanation:
A chemical change is not easily reversible and yields new substances. It is often accompanied by a loss or gain of heat.
In the answer section, i have shown some evidences that lead us to conclude that a chemical reaction has taken place. The occurrence of a chemical change often goes with the formation of new substances as earlier stated and any of these signs may accompany the process.
For instance, when a metal is dropped in dilute acid solution, bubble of hydrogen gas indicates that a chemical reaction has taken place.
The air molecules in the compressions of the second wave are denser, so the sound is louder.
<h3>What is a sound wave?</h3>
Sound waves are longitudinal waves that travel through a medium like air or water.
In a closed room, Noah and Nina are sitting 15 m apart.
As Noah says the same sentence twice, Nina does not hear the sound the first time but she does hear the sentence the second time.
This happens as the air molecules in the compressions of the second wave are denser. As a result, the sound is louder.
The correct option is ''The air molecules in the compressions of the second wave are denser, so the sound is louder''.
Learn more about the sound wave here:
brainly.com/question/1554319
#SPJ1
Answer: 1090°C
Explanation: According to combined gas laws
(P1 × V1) ÷ T1 = (P2 × V2) ÷ T2
where P1 = initial pressure of gas = 80.0 kPa
V1 = initial volume of gas = 10.0 L
T1 = initial temperature of gas = 240 °C = (240 + 273) K = 513 K
P2 = final pressure of gas = 107 kPa
V2 = final volume of gas = 20.0 L
T2 = final temperature of gas
Substituting the values,
(80.0 kPa × 10.0 L) ÷ (513 K) = (107 kPa × 20.0 L) ÷ T2
T2 = 513 K × (107 kPa ÷80.0 kPa) × (20.0 L ÷ 10.0 L)
T2 = 513 K × (1.3375) × (2)
T2 = 1372.275 K
T2 = (1372.275 - 273) °C
T2 = 1099 °C