0,35 kmol/m³ = 0,35 mol/dm³ = 0,35 mol/L
175 mL = 0,175 L
*-*-*-*-*-*-*-*-*-*-*-*
C = n/V
n = 0,35×0,175
n = 0,06125 mol
mCa(NO₃)₂: 40+(14×2)+(16×6) = 164 g/mol
1 mol --------- 164g
0,06125 ---- X
X = 10,045g
To prepare 175 mL of 0,35M solution, add 10,045g of calcium nitrate and add water to a volume of 175ml.
C. losing one electron
Explanation:
It is because the potassium atom electronic configuration is 2,8,8,1 where by if it loses one electron it becomes stable
The element with the lowest ionization energy is CESIUM, CS.
Ionization energy is the energy required to remove the most loosely bound electron in an atom of an element. The higher the number of shells in an atom of an element, the lower the ionization energy that will be required to remove the valence electron.
yes 89.75 sorry I'm not the best at math you should look on the internet
Answer:
192.9
Explanation:
From the question,
Ke = [HCL]²/[H₂][CL₂].......................... Equation 1
Where Ke = Equilibrium constant.
Given: [HCL] = 0.0625 M, [H₂] = 0.0045 M, [CL₂] = 0.0045 M
Substitute these values into equation 1
Ke = (0.0625)²/(0.0045)(0.0045)
ke = (3.90625×10⁻³)/(2.025×10⁻⁵)
ke = 1.929×10²
ke = 192.9
Hence the equilibrium constant of the system = 192.9