We are given the description of a diagram where the base of a parallelogram lies on the x-axis with the left vertex on the origin. We are also given the three consecutive coordinates of the vertices which are
(h, j ), (0, 0), and (k, 0)
Based on the coordinates, the point (h, j) is j units from the y-axis
On the third step it adds 8 on both sides. You are suppose to subtract 8 on both sides.
By definition of circumference, the length of the arc EF (radius: 6 in, central angle: 308°) shown in red is approximately equal to 32.254 inches.
<h3>How to calculate the length of an arc</h3>
The figure presents a circle, the arc of a circle (s), in inches, is equal to the product of the <em>central</em> angle (θ), in radians, and the radius (r), in inches. Please notice that a complete circle has a central angle of 360°.
If we know that θ = 52π/180 and r = 6 inches, then the length of the arc CD is:
s = [(360π/180) - (52π/180)] · (6 in)
s ≈ 32.254 in
By definition of circumference, the length of the arc EF (radius: 6 in, central angle: 308°) shown in red is approximately equal to 32.254 inches.
<h3>Remark</h3>
The statement has typing mistakes, correct form is shown below:
<em>Find the length of the arc EF shown in red below. Show all the work.</em>
To learn more on arcs: brainly.com/question/16765779
#SPJ1
if indeed two functions are inverse of each other, then their composite will render a result of "x", namely, if g(x) is indeed an inverse of f(x), then
![\bf (g\circ f)(x)=x\implies g(~~f(x)~~)=x \\\\\\ \begin{cases} f(x) = 3x\\ g(x)=\cfrac{1}{3}x \end{cases}\qquad \qquad g(~~f(x)~~)=\cfrac{1}{3}[f(x)]\implies g(~~f(x)~~)=\cfrac{1}{3}(3x)](https://tex.z-dn.net/?f=%5Cbf%20%28g%5Ccirc%20f%29%28x%29%3Dx%5Cimplies%20g%28~~f%28x%29~~%29%3Dx%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20f%28x%29%20%3D%203x%5C%5C%20g%28x%29%3D%5Ccfrac%7B1%7D%7B3%7Dx%20%5Cend%7Bcases%7D%5Cqquad%20%5Cqquad%20g%28~~f%28x%29~~%29%3D%5Ccfrac%7B1%7D%7B3%7D%5Bf%28x%29%5D%5Cimplies%20g%28~~f%28x%29~~%29%3D%5Ccfrac%7B1%7D%7B3%7D%283x%29)