Answer:
A) 1000 + 50m
B) 50 could be a monthly bonus of some sort.
C) 1000 is probably monthly salary or another bonus.
We know that
volume of the box=length*width*height
V=L*W*H----> H=V/[L*W]
V=576 in³
L=12 in
W=8 in
so
H=576/[12*8]----> H=6 in
the answer is
the height of the box is 6 in
Answer:
Criteria.
Step-by-step explanation:
A series of criteria is a set of parameters established by whoever seeks to interpret a certain information or quantity of concepts, by means of which a set of interpretive rules is established that should be equal to all the concepts to be analyzed. Thus, the criteria allow a set of data to be analyzed under the same parameters or information processing requirements.
The answer is: 
The inverse of a function
is another function,
, with the following property:

In other words, the inverse of a function does exactly "the opposite" of what the original function does, and so if you compute them both in sequence you return to the starting point.
Think for example to a function that doubles the input,
, and one that halves it:
. Their composition is clearly the identity function
, since you consider "twice the half of something", or "half the double of something".
In general, to invert a function
, you have to solve the expression for
, writing an expression like
. If you manage to do so, then
is the inverse of
.
In your case, you have

Multiply both sides by
to get

Square both sides to get

Finally, subtract 3 from both sides to get

Since the name of the variables doesn't really have a meaning, you can say that the inverse function is

As for the domain of the inverse function, remember what we said ad the beginning: if the original function goes from set A (domain) to set B (codomain), then the inverse function goes from set B (domain) to set A (codomain). This means that the inverse function is defined on an element in B if and only if that element belongs to the range of the original function, i.e. the set of the elements of the codomain
such that there exists
. So, we need the range of
.
We know that the range of
is
. When you transform it to
you simply translate the graph horizontally, so the range doesn't change. But when you multiply the function times
you affect both extrema of the range, turning it into
, which you can simply write as 