The zeroes are also the x-intercept or the roots of the function
Answer:
$49,126.87
Step-by-step explanation:
Given data
Principal= $33,000
rate= 6.75%
Time= 6 years
First, convert R as a percent to r as a decimal
r = R/100
r = 6.65/100
r = 0.0665 rate per year,
Then solve the equation for A
A = P(1 + r/n)^nt
A = 33,000.00(1 + 0.0665/12)^(12)(6)
A = 33,000.00(1 + 0.005541667)^(72)
A = $49,126.87
Hence the final amount is $49,126.87
Answer:
31 emails, but I can't do a # number line.
Step-by-step explanation:
Answer:
Step-by-step explanation:
the first day he used 30 cups
the second day he used 15% of the remaining cups...a total of 90 cups were used on second day.
so 15%of the remaining cups = 90.....so if u let x be the total cups, then the remaining cups would be x - 30
15% of (x - 30) = 90.....turn ur percent to a decimal..." of " means multiply
0.15(x - 30) = 90
0.15x - 4.5 = 90
0.15x = 90 + 4.5
0.15x = 94.5
x = 94.5 / 0.15
x = 630 total cups <==
lets check..
start with 630 cups....used 30 the first day....leaving u with 600 cups....15% of the remaining cups = 90.....so 15% of 600 = 90....lets check it
15%of 600 = 0.15(600) = 90...yep, thats correct....there were 630 cups in the new un-opened box
Question:
Consider the sequence of numbers: 
Which statement is a description of the sequence?
(A) The sequence is recursive, where each term is 1/4 greater than its preceding term.
(B) The sequence is recursive and can be represented by the function
f(n + 1) = f(n) + 3/8 .
(C) The sequence is arithmetic, where each pair of terms has a constant difference of 3/4 .
(D) The sequence is arithmetic and can be represented by the function
f(n + 1) = f(n)3/8.
Answer:
Option B:
The sequence is recursive and can be represented by the function

Explanation:
A sequence of numbers are

Let us first change mixed fraction into improper fraction.

To find the pattern of the sequence.
To find the common difference between the sequence of numbers.




Therefore, the common difference of the sequence is 3.
That means each term is obtained by adding
to the previous term.
Hence, the sequence is recursive and can be represented by the function