Answer: f(120°) = (√3) + 1/2
Step-by-step explanation:
i will solve it with notable relations, because using a calculator is cutting steps.
f(120°) = 2*sin(120°) + cos(120°)
=2*sin(90° + 30°) + cos(90° + 30°)
here we can use the relations
cos(a + b) = cos(a)*cos(b) - sin(a)*sin(b)
sin(a + b) = cos(a)*sin(b) + cos(b)*sin(a)
then we have
f(120°) = 2*( cos(90°)*sin(30°) + cos(30°)*sin(90°)) + cos(90°)*cos(30°) - sin(90°)*sin(30°)
and
cos(90°) = 0
sin(90°) = 1
cos(30°) = (√3)/2
sin(30°) = 1/2
We replace those values in the equation and get:
f(120°) = 2*( 0 + (√3)/2) + 0 + 1/2 = (√3) + 1/2
<em><u>im not sureeeeeeeeeeeeeeeeeeeeeeeee</u></em>
Well, for a line with a slope of 3/4, any other parallel line to it, will also have the same slope of 3/4
so if the line through (2, -1) is parallel to it, it has a slope of 3/4 as well
Answer:
Step-by-step explanation:



