1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
2 years ago
13

The height of a cylinder is 8 centimeters. The circumference of the base of the cylinder is 20π centimeters. Which measurement i

s closest to the volume of the cylinder in cubic centimeters?
Mathematics
1 answer:
trapecia [35]2 years ago
3 0

Answer: 2514.28\ cm^3

Step-by-step explanation:

Given

The height of the cylinder is h=8\ cm

Circumference of the base is 20\pi \ cm

suppose 'r' is the radius of the cylinder

\Rightarrow 2\pi r=20\pi\\\Rightarrow r=10\ cm

The volume of a cylinder is V=\pi r^2h

\Rightarrow V=\pi \times 10^2\times 8=2514.28\ cm^3

You might be interested in
Solve the following system<br> algebraically:
Basile [38]

Answer: A (8,4)

Step-by-step explanation:

X=8

2x+y=20

2(8)+y=20

16 +y = 20

Y= 4

(8,4)

3 0
3 years ago
Read 2 more answers
Classify the following triangle. Check all that apply.
grin007 [14]

Answer:

Isosceles, obtuse triangle

Step-by-step explanation:

The triangle is isosceles since there are equal acute-angles which therefore prove two equal sides.

The triangle is obtuse because it consists of one obtuse angle which is 98 and is greater than 90 degrees.

Hope this helps!!! PLZ MARK BRAINLIEST!!!

4 0
3 years ago
Please help I will mark brainlist if correct
djyliett [7]
Solving for L:

P = 2L + 2W
P - 2W = 2L
(P - 2W) / 2 = L
L = (P - 2W) / 2
8 0
3 years ago
Divide.<br><br> 5892 ÷ 18<br><br><br> 327<br><br> 327118<br><br> 32713<br><br> 327718
kakasveta [241]
327 is gonna be your answer just use a calculator
6 0
3 years ago
Find the area of the region enclosed by the graphs of the functions
Vaselesa [24]

Answer:

\displaystyle A = \frac{8}{21}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Functions
  • Function Notation
  • Graphing
  • Solving systems of equations

<u>Calculus</u>

Area - Integrals

Integration Rule [Reverse Power Rule]:                                                                 \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                          \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

*Note:

<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>

<u />

<u>Step 1: Define</u>

f(x) = x²

g(x) = x⁶

Bounded (Partitioned) by x-axis

<u>Step 2: Identify Bounds of Integration</u>

<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>

Simply graph the functions to see where the functions intersect (See Graph Attachment).

Interval: [-1, 1]

Lower bound: -1

Upper Bound: 1

<u>Step 3: Find Area of Region</u>

<em>Integration</em>

  1. Substitute in variables [Area of a Region Formula]:                                     \displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx
  2. [Area] Rewrite [Integration Property - Subtraction]:                                     \displaystyle A = \int\limits^1_{-1} {x^2} \, dx - \int\limits^1_{-1} {x^6} \, dx
  3. [Area] Integrate [Integration Rule - Reverse Power Rule]:                           \displaystyle A = \frac{x^3}{3} \bigg| \limit^1_{-1} - \frac{x^7}{7} \bigg| \limit^1_{-1}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                    \displaystyle A = \frac{2}{3} - \frac{2}{7}
  5. [Area] Subtract:                                                                                               \displaystyle A = \frac{8}{21}

Topic: AP Calculus AB/BC (Calculus I/II)  

Unit: Area Under the Curve - Area of a Region (Integration)  

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • What is the measure of QPR
    13·1 answer
  • Another question. Help is very much appreciated!<br><br> Thanks!<br><br> (See attachment)
    5·2 answers
  • Solve the inerquality 4x-7&lt;5
    14·1 answer
  • PLEASE HELP!!<br> What remainder does the number (−50) leave after division by 7?
    13·1 answer
  • What is the correct formula for density
    8·2 answers
  • The quality control team of a company checked 800 digital cameras for defects. The team found that 20 cameras had lens defects,
    15·1 answer
  • How to determine whether an equation is always, sometimes , or never true?
    12·1 answer
  • According to a poll, 56% of voters are likely to vote for the incumbent. The poll has a 3% margin of error. The margin of error
    11·1 answer
  • Natalie wants to buy 5 feet of ribbon for her scrap book supplies. The store only sells the ribbon in inches. How much ribbon do
    12·2 answers
  • What is the perimeter of 10ft and 18ft of a square simplified
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!