Answer: yes
Step-by-step explanation:
Answer:
125
Step-by-step explanation:
Answer:
The expressions which equivalent to
are:
⇒ B
⇒ C
Step-by-step explanation:
Let us revise some rules of exponent
Now let us find the equivalent expressions of 
A.
∵ 4 = 2 × 2
∴ 4 = 
∴
=
- By using the second rule above multiply 2 and (n + 2)
∵ 2(n + 2) = 2n + 4
∴
=
B.
∵ 4 = 2 × 2
∴ 4 = 2²
∴
= 2² ×
- By using the first rule rule add the exponents of 2
∵ 2 + n + 1 = n + 3
∴
=
C.
∵ 8 = 2 × 2 × 2
∴ 8 = 2³
∴
= 2³ ×
- By using the first rule rule add the exponents of 2
∵ 3 + n = n + 3
∴
=
D.
∵ 16 = 2 × 2 × 2 × 2
∴ 16 = 
∴
=
×
- By using the first rule rule add the exponents of 2
∵ 4 + n = n + 4
∴
=
E.
is in its simplest form
The expressions which equivalent to
are:
⇒ B
⇒ C
Answer:
Whitney made 6 baskets
Step-by-step explanation:
Let the number of baskets made by Whitney be x.
The 15 baskets made by
Chiyann is equal to 2 times plus 3 what Whitney made
Mathematically what she made would be 2x + 3
To get x, we equate this equation to 15
2x + 3 = 15
2x = 12
x = 12/2
x = 6 baskets
Answers:
- <u>24000 dollars</u> invested at 4%
- <u>18000 dollars</u> was invested at 7%
======================================================
Work Shown:
x = amount invested at 4%
If she invests x dollars at 4%, then the rest (42000-x) must be invested at the other rate of 7%
She earns 0.04x dollars from that first account and 0.07(42000-x) dollars from the second account
This means we have
0.04x+0.07(42000-x)
0.04x+0.07*42000-0.07x
0.04x+2940-0.07x
-0.03x+2940
This represents the total amount of money earned after 1 year.
We're told the amount earned in interest is $2220, so we can say,
-0.03x+2940 = 2220
-0.03x = 2220-2940
-0.03x = -720
x = -720/(-0.03)
x = 24000 dollars is the amount invested at 4%
42000-x = 42000-24000 = 18000 dollars was invested at 7%
----------------------
As a check, we can see that
18000+24000 = 42000
and also
0.04x = 0.04*24000 = 960 earned from the first account
0.07*18000 = 1260 earned from the second account
1260+960 = 2220 is the total interest earned from both accounts combined
This confirms our answers.