1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna1 [17]
3 years ago
11

Do the ordered pairs (2, 20), (5, 15), (12, 19), and (14, 13) represent a function?

Mathematics
2 answers:
Lilit [14]3 years ago
6 0
Yes it does because the c values don’t repeat
Natalka [10]3 years ago
3 0

Answer:

yes

Step-by-step explanation:

You might be interested in
A cone has a height of 1 meter and a diameter of 2 meters. What is it’s volume
Ber [7]

Cone volume formula: V = πr²h/3

r = radius

h = height

The radius is half the diameter, so, we can divide.

2 / 2 = 1

Now, solve with the given values.

V = π(1)²(1)/3

V = π(1)(1/3)

V = 3.14(1/3)

V ≈ 1.05

Therefore, the volume is roughly 1.05m^3

Best of Luck!

6 0
4 years ago
Will give out 25 points for right answer!!! (Both parts of answer 1)
patriot [66]

Answer:

1.x=41

x=9

Step-by-step explanation:

1.x-7=34

x=41

3x-7=20

3x=27

x=9

3 0
1 year ago
Find the percentage of vacationers from<br> question 10 who spent between $1500<br> and $2000.
mars1129 [50]

Answer:

The percentage change of vacationers is 33.3 %

Step-by-step explanation:

Given as :

The old value of the vacationers = $ 1500

The new value of the vacationers = $ 2000

Let the percentage variation = x %

Or, x % increase = \dfrac{\tyextrm new value - \textrm old value}{\textrm old value} × 100

Or,  x % increase = \dfrac{\tyextrm $ 2000 - \textrm $ 1500}{\textrm $ 1500} × 100

Or, x % increase = \frac{500}{1500} × 100

Or, x % increase = \frac{1}{3} × 100

Or, x % increase = \frac{100}{3}

∴  x  = 33.3 %

So, The percentage increase change is 33.3 %

Hence The percentage change of vacationers is 33.3 %   Answer

3 0
3 years ago
I need help... on my homework it says to write each expression in radical form, or write each radical and exponential form . For
pantera1 [17]

\bf ~\hspace{7em}\textit{rational exponents} \\\\ a^{\frac{ n}{ m}} \implies \sqrt[ m]{a^ n} ~\hspace{10em} a^{-\frac{ n}{ m}} \implies \cfrac{1}{a^{\frac{ n}{ m}}} \implies \cfrac{1}{\sqrt[ m]{a^ n}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \sqrt{13}\implies \sqrt[2]{13^1}\implies 13^{\frac{1}{2}}

5 0
3 years ago
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
4 years ago
Other questions:
  • Help me pls. Given the slope is 1/3, the y-intercept is 4, and a point of the graph is (3,5). Write the equations of the linear
    12·1 answer
  • 3&lt;6c+13&lt;5 (Enter your answer in INTERVAL notation, using U to indicate a union of intervals; or enter DNE if no solution e
    13·1 answer
  • Your school is choosing a new school mascot to represent all team sports. which group should you ask to get a random sample of s
    5·1 answer
  • You are starting a new job that will last for 30 days. You are given 2 options for payment.
    9·1 answer
  • Which expression is equivalent to the given expression?
    12·2 answers
  • What expression is equivalent to 24x - 36 ? A. 2(12x + 18) B. 3(8x + 33) C. 6(4x -6). D. 24(x - 12)
    13·2 answers
  • Please help i’ll mark brainliest
    15·1 answer
  • Which arrangment shows 27/5,5 3/5, and 33/6 in order least to greatest
    7·1 answer
  • Consider the differential equation dy/dx= e^x-1/2y. If y = 4 when x = 0 what is a value of y when x = 1?
    12·1 answer
  • Pls help me with this question
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!