1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnoma [55]
3 years ago
9

What are two numbers that multiply to -20 and add to 1

Mathematics
1 answer:
True [87]3 years ago
7 0

Answer:

5 and -4

Step-by-step explanation:

Answer is 5 and -4

You might be interested in
Each front tire on a particular type of vehicle is supposed to be filled to a pressure of 26 psi. Suppose the actual air pressur
Ostrovityanka [42]

Answer:

1) K = 7.895 × 10⁻⁶

2) 0.3024

3)  3.6775 × 10⁻²

4) f(x)= \frac{1}{20} +\frac{3x^{2} }{38000}

5) X and Y are not independent variables

6)

h(x\mid y)  = \frac{38000x^2+38000y^2}{3y^2+19000}

7)  0.54967

8)  25.33 psi

σ = 2.875

Step-by-step explanation:

1) Here we have

f(x, y) =\begin{cases} & \text (x^{2}+y^{2}) \right. 20\leq x\leq 30 & \ 0 \, Otherwise\end{cases}

\int_{x}\int_{y} f(x, y)dydx = 1    

\int_{x}( \right )\int_{y} f(x, y)dy)dx = 1

K\int_{x}( \right )\int_{y}(x^{2} +y^{2})dy)dx = 1

K\int_{x}( (x^{2}y +\frac{y^{3}}{3})_{20}^{30})dx = 1

K\int_{x}( (x^{2}(30-20)) +\frac{30^{3}-20^{3}}{3})_{20}^{30})dx = 1

K\int_{x}( (10x^{2})+\frac{19000}{3})_{20}^{30})dx = 1

K( (10\frac{x^{3}}{3})+\frac{19000}{3}x)_{20}^{30})= 1

K( (10\frac{30^{3}-20^{3}}{3})+\frac{19000}{3}(30-20)))_{20}^{30}) = 1

K =\frac{3}{380000}

2) The probability that both tires are underfilled

P(X≤26,Y≤26) =

\int_{20}^{26} \int_{20}^{26}K(x^{2}+y^{2})dydx

=K\int_{x}( \right )\int_{y}(x^{2} +y^{2})dy)dx

= K\int_{x}( (x^{2}y +\frac{y^{3}}{3})_{20}^{26})dx

K\int_{x}( (x^{2}(26-20)) +\frac{26^{3}-20^{3}}{3})_{20}^{26})dx

K\int_{x}( (6x^{2})+\frac{9576}{3})_{20}^{26})dx

K( (6\frac{x^{3}}{3})+\frac{9576}{3}x)_{20}^{26})

K( (6\frac{26^{3}-20^{3}}{3})+\frac{9576}{3}(26-20)))_{20}^{26})

38304\times K =\frac{3\times38304}{380000}

= 0.3024

That is P(X≤26,Y≤26) = 0.3024

3) The probability that the difference in air pressure between the two tires is at most 2 psi is given by

{20 ≤ x ≤ 30, 20 ≤ y ≤ 30, |  x-y | ≤ 2}

{20 ≤ x ≤ 30, 20 ≤ y ≤ 30, \sqrt{(x-y)^2} ≤ 2}

{20 ≤ x ≤ 30, 20 ≤ y ≤ 30, y ≤ x - 2}

Which gives

20 ≤ x ≤ 22 ::      20 ≤ y ≤ x + 2

22 ≤ x ≤ 28 ::      x - 2 ≤ y ≤ x + 2

28 ≤ x ≤ 30 ::      x - 2 ≤ y ≤ 30

From which we derive probability as

P( |  x-y | ≤2) =  \int_{28}^{30} \int_{x-2}^{30}K(x^{2}+y^{2})dydx +  \int_{20}^{22} \int_{20}^{x+2}K(x^{2}+y^{2})dydx +  \int_{22}^{28} \int_{x-2}^{x+2}K(x^{2}+y^{2})dydx

= K (  \int_{28}^{30} \int_{x-2}^{30}K(x^{2}+y^{2})dydx +  \int_{20}^{22} \int_{20}^{x+2}K(x^{2}+y^{2})dydx +  \int_{22}^{28} \int_{x-2}^{x+2}K(x^{2}+y^{2})dydx)

= K\left [ \left (\frac{14804}{15}  \right )+\left (\frac{8204}{15}  \right ) +\left (\frac{46864}{15}  \right )\right ] = \frac{3}{380000}\times \frac{69872}{15} =\frac{4367}{118750} = 3.6775 × 10⁻²

4) The marginal pressure distribution in the right tire is

f_{x}\left ( x \right )=\int_{y} f(x ,y)dy

=K( \right )\int_{y}(x^{2} +y^{2})dy)

= K( (x^{2}y +\frac{y^{3}}{3})_{20}^{30})

K( (x^{2}(30-20)) +\frac{30^{3}-20^{3}}{3})_{20}^{30})

K(10x^{2}+\frac{19000}{3})}

\frac{3}{38000} (10x^{2}+\frac{19000}{3})}

= \frac{1}{20} +\frac{3x^{2} }{38000}

f(x)= \frac{1}{20} +\frac{3x^{2} }{38000}

5) Here we have

The product of marginal distribution given by

f_x(x) f_y(y) = ( \frac{1}{20} +\frac{3x^{2} }{38000})( \frac{1}{20} +\frac{3y^{2} }{38000}) =\frac{(3x^2+1900)(3y^2+1900)}{1444000000}

≠ f(x,y)

X and Y are not independent variables since the product of the marginal distribution is not joint probability distribution function.

6) Here we have the conditional probability of Y given X = x and the conditional probability of X given that Y = y is given by

h(y\mid x) =\frac{f(x,y))}{f_{X}\left (x  \right )}=  Here we have

 

h(y\mid x) =\frac{x^2+y^2}{\frac{1}{20} +\frac{3x^2}{38000} } = \frac{38000x^2+38000y^2}{3x^2+19000}

Similarly, the the conditional probability of X given that Y = y is given by

h(x\mid y) =\frac{x^2+y^2}{\frac{1}{20} +\frac{3y^2}{38000} } = \frac{38000x^2+38000y^2}{3y^2+19000}

7) Here we have

When the pressure in the left tire is at least 25 psi gives

K\int\limits^{25}_{20}  \frac{38000x^2+38000y^2}{3x^2+19000} {} \, dx

Since x = 22 psi, we have

K\int\limits^{25}_{20}  \frac{38000\cdot 25^2+38000y^2}{3\cdot 25^2+19000} {} \, dx = K \int\limits^{25}_{20}  10.066y^2+6291.39, dx = 57041.942\times \frac{3}{380000}= 0.45033

For P(Y≥25) we have

K \int\limits^{30}_{25}  10.066y^2+6291.39, dx = 69624.72\times \frac{3}{380000} = 0.54967

8) The expected pressure is the conditional mean given by

E(Y\mid x) = K\int\limits^{30}_{20} yh(y \mid x)\, dy

E(Y\mid x) = K\int\limits^{30}_{20} 10.066y^3+6291.39y\, dy = \frac{3}{380000} \times 3208609.27153

= 25.33 psi

The standard deviation is given by

Standard \, deviation =\sqrt{Variance}

Variance = K\int\limits^{30}_{20} [y-E(Y\mid x) ]^2h(y \mid x)\, dy

=K\int\limits^{30}_{20} [y-25.33]^2(10.066y^2+6291.39)\, dy

= \frac{3}{380000} \times 1047259.78 = 8.268

The standard deviation = √8.268 = 2.875.

3 0
3 years ago
Which expressions are equivalent to the one below? Check all that apply.
mestny [16]

Answer:

c

Step-by-step explanation:

log2-log 6=log(2/6)=log (1/3)

4 0
3 years ago
Read 2 more answers
Plz help don’t understand
saul85 [17]

Answer:

Step-by-step explanation:

every time x goes up 1,  y goes up 4  

x = 3  minus x = 2  is a delta (a change of 1)

x = 4  minus x = 3  is a delta (a change of 1)

x = 5  minus x = 4  is a delta (a change of 1)

       the delta x is ALWAYS 1 for this table you can always substract x's to find the delta     delta is symbolized by Δ      Δx  for the delta x

y = 7  minus y = 3  is a delta (a change of 4)

y = 11  minus y = 7  is a delta (a change of 4)

y = 15  minus y = 11  is a delta (a change of 4)

    the delta y is ALWAYS 4 for this table you can always substract y's to find the delta     delta is symbolized by Δ     Δy  for the delta y

the slope m = Δy / Δx      m = 4 / 1     m = 4

     y = mx + b             when x = 0    then  y = b   (called the y intercept)

so how do we find the y intercept?    

look at the pattern in the TABLE  Δx  and Δy

   when x = 1    y = (3 - 4)  = -1

             x = 0    y =( -1 - 4)   = -5

so       y = 4x - 5     is a line equation for the data in this table

                                I believe there are other forms for linear equations

                               I chose the y-intercept form

use the point slope equation

       (y - y1)  =  m(x - x1)            where (x1, y1)  are the coordinates of a point on  

                                                the line

       when you know the slope of the line and a point on the line

       as before

       m = (y2 - y1)  / (x2 - x1)          from the table

           = (7 - 3) / (3 - 2)                 still equals

           = 4/1  =  4        

        pick a point on the line    say x= 4 and y = 11    (4, 11)

       (y - y1)  =  m(x - x1)    

        y - 11   =   4(x - 4)              point slope form

         solving point slope form  for  y

        y  - 11  =   4x - 16               add 11 to both sides    

           y  =  4x - 5                    back to the y-intercept form

7 0
3 years ago
John cuts 3 lawns in 5 hours, and Taylor cuts 5 lawns in 8 hours. Who cuts lawns at a faster rate?
faust18 [17]
Taylor cuts lawns at a faster rate
4 0
3 years ago
A store is having a sale on jelly beans and trail mix. For 3 pounds of jelly beans and 5 pounds of trail mix, the total cost is
Maurinko [17]
Set up your two equations: 
<span>9x+7y=53 </span>
<span>3x+5y=25 </span>
<span>X=cost per pound of jelly bean </span>
<span>Y=cost per pound of trail mix </span>
<span>Multiply the second equation by (-3): </span>
<span>-9x-15y=-75 </span>
<span>+ 9x+7y=53 <---- copy first equation and add them </span>
<span>—————— </span>
<span>0x-8y=-22 </span>
<span>Then solve for y: </span>
<span>Y=2.76 this is your cost per pound of trail mix. </span>
<span>Then plug y back in to one of the original equations and solve for x: </span>
<span>3x+7(2.75)=25 </span>
<span>X=3.75 this is you cost per pound of jelly beans</span>
6 0
3 years ago
Other questions:
  • The ratio of the length of a rectangular field to its width is 4:3. If the length of the field is 100 meters, what is the perime
    14·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B2%7D%7B3%7D%20%20-%20%20%5Cfrac%7B4%7D%7B10%7D%20%20%3D%20" id="TexFormula1" titl
    8·1 answer
  • Victor malaba has a net income of $1,240per month. If he spends$150 on foid,$244 on a car payment,$300 on rent, and 50 on saving
    8·1 answer
  • standard cars have 4wheels and standard semitrucks have 18 wheels. if only cars and semitrucks are parked in certain lot, the to
    15·1 answer
  • What is the slope of the line that goes through the following two points?
    10·1 answer
  • Lol anyone wanna be friends
    15·2 answers
  • Molly purchased a new guitar that was on sale the guitar cost $172.50 before the sale the sale was 20% off how much did molly pa
    15·2 answers
  • PLEASE HELP MEEEEEEREEEE ​
    5·2 answers
  • Help with 5a, to find the values of x​
    15·1 answer
  • 1
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!