A mixture in which composition is constant throughout the mixture is said to be homogeneous mixture.
Now, oil and vinegar dressing is not considered as a homogeneous mixture because composition is not uniform.
Concrete is made up of three components. Thus, composition is not uniform, so it is not a homogeneous mixture.
A mixture of salt and pepper, when salt is mixed in pepper then the mixture is not uniform as white flecks of salt and black flecks of pepper can be seen in the mixture. Thus, it is not a homogeneous mixture.
Salt water is uniform mixture. Thus, it is a homogeneous mixture.
Thus, salt water is the correct answer.
I this is really hard who can help me complete all of these because this is acknowledged
There are two possible situations.
1) If a phase change is not occurring, then the heat added contributes to increased translational energy of the particles. What that means is the particles move/vibrate faster.
2) If a phase change is occurring, then the heat added contributes to the breaking of bonds or intermolecular forces (depending on the chemical nature of the matter you're dealing with).
Heyyy!!
Your answer is True.
Please mark it as brainliest.
Hope it helps you.
Explanation:
It is given that aluminium nitrate and calcium chloride are mixed together with sodium phosphate.
And,
Let us assume that the solubility be "s". And, the reaction equation is as follows.

s = 
Also, 

s = 
This means that first, aluminium phosphate will precipitate.
Now, we will calculate the concentration of phosphate when calcium phosphate starts to precipitate out using the
expression as follows.
![K_{sp} = [Ca^{2+}]^{3}[PO^{3-}_{4}]^{2}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E%7B3%7D%5BPO%5E%7B3-%7D_%7B4%7D%5D%5E%7B2%7D)
![2.0 \times 10^{-29} = (0.016)^{3}[PO^{3-}_{4}]^{2}](https://tex.z-dn.net/?f=2.0%20%5Ctimes%2010%5E%7B-29%7D%20%3D%20%280.016%29%5E%7B3%7D%5BPO%5E%7B3-%7D_%7B4%7D%5D%5E%7B2%7D)
![2.0 \times 10^{-29} = 4.096 \times 10^{-6} \times [PO^{3-}_{4}]^{2}](https://tex.z-dn.net/?f=2.0%20%5Ctimes%2010%5E%7B-29%7D%20%3D%204.096%20%5Ctimes%2010%5E%7B-6%7D%20%5Ctimes%20%5BPO%5E%7B3-%7D_%7B4%7D%5D%5E%7B2%7D)
= 
=
M
Similarly, calculate the concentration of aluminium at this concentration of phosphate as follows.

![K_{sp} = [Al^{3+}][PO^{3-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAl%5E%7B3%2B%7D%5D%5BPO%5E%7B3-%7D_%7B4%7D%5D)
![9.84 \times 10^{-21} = [Al^{3+}] \times 2.21 \times 10^{-12}](https://tex.z-dn.net/?f=9.84%20%5Ctimes%2010%5E%7B-21%7D%20%3D%20%5BAl%5E%7B3%2B%7D%5D%20%5Ctimes%202.21%20%5Ctimes%2010%5E%7B-12%7D)
M
Thus, we can conclude that concentration of aluminium will be
M when calcium begins to precipitate.