A
not every expirement has control
6 Na + 1 Fe₂O₃ → 3 Na₂O + 6 Fe
<h3>Explanation</h3>
Method One: Refer to electron transfers.
Oxidation states:
- Na: from 0 to +1; loses one electron.
- Fe: from +3 to 0; gains three electrons.
Each mole of Fe₂O₃ contains two Fe atoms and will gain 2 × 3 = 6 electrons during the reaction. It takes 6 moles of Na to supply all those electrons.
6 Na + 1 Fe₂O₃ → ? Na₂O + ? Fe
- There are two moles of Na atoms in each mole of Na₂O. 6 moles of Na will make 3 moles of Na₂O.
- There are two moles of Fe atoms in each mole of Fe₂O₃. 1 mole of Fe₂O₃ will make 2 moles of Fe.
6 Na + 1 Fe₂O₃ → 3 Na₂O + 2 Fe
Method Two: Atoms conserve.
Fe₂O₃ has the largest number of atoms among one mole of all four species in this reaction. Assume <em>one</em> as its coefficient.
? Na + <em>1</em> Fe₂O₃ → ? Na₂O + ? Fe
There are two moles of Fe atoms and three moles of O atoms in each mol of Fe₂O₃. One mole of Fe₂O₃ contains two moles of Fe and three moles of O. There are one mole of O atom in every mole of Na₂O. Three moles of O will go to three moles of Na₂O.
? Na + <em>1</em> Fe₂O₃ → <em>3</em> Na₂O + <em>2</em> Fe
Each mole of Na₂O contains two moles of Na. Three moles of Na₂O will contain six moles of Na.
<em>6</em> Na + <em>1</em> Fe₂O₃ → <em>3</em> Na₂O + <em>2</em> Fe
Simplify the coefficients. All coefficients in this equation are now full number and relatively prime. Hence the equation is balanced.
6 Na + 1 Fe₂O₃ → 3 Na₂O + 2 Fe
The correct option is B.
Mendeleev was the one who originated the idea of arranging elements in the periodic table according to their chemical and physical properties. He left spaces in the periodic table and predicted the discovery of those elements that had not been discovered then. One of these elements is Gallium. He predicted that gallium is going to be a metal and he gave the properties that the element will possess. He also predicted that the element gallium will be placed under aluminium in the periodic table.
BaSO4 is the correct formula for barium (ll) sulfate
Answer:
All of the above are true
Explanation:
a) The emission spectrum of a particular element is always the same and can be used to identify the element: It's true since the emission spectrum for each element is unique. It has the same bright lines at the same wavelength. This feature is used to identify elements. For example, the study of the emission spectra of light arriving from stars allow us to identify the elements presents in the star because the light contains the emission spectra of those elements.
b)The uncertainty principle states that we can never know both the exact location and speed of an electron: It is true since the velocity of an electron is related to its wave nature, while its position is related to its particle nature and we cannot simultaneously measure electron's position and velocity with precision.
c) An orbital is the volume in which we are most likely to find an electron: An orbital is a probability distribution map that is used to decribe the likely position of an electron in an atom.