Answer:
-32 Fahrenheit converts to 237.594 Kelvin
Electrolytes are substances that produce ions when they dissolve in water.
What are electrolytes?
When some substances are dissolved in water, they undergo physical or chemical changes, creating ions in solution. These substances form an important class of compounds called electrolytes. Substances that do not release ions when dissolved are called non-electrolytes. A substance is said to be a strong electrolyte if the physical or chemical process that produces ions is inherently 100% efficient (all dissolved compounds produce ions). A solute is said to be a weak electrolyte if only a relatively small portion of the solute undergoes ion production processes.
By measuring the electrical conductivity of aqueous solutions containing substances, substances can be identified as strong, weak, or non-electrolyte. To conduct electricity, a substance must contain free-moving charged species. The best known is the conduction of electricity through metal wires. In this case, the mobile charged unit is the electron.
Therefore, Electrolytes are substances that produce ions when they dissolve in water.
To know more about electrolyte, visit:
brainly.com/question/17089766
#SPJ4
Answer: The volume of 0.684 mol of carbon dioxide at s.t.p. is 15.3 L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = ?
n = number of moles = 0.684
R = gas constant = 
T =temperature =
(at STP)



Thus the volume of 0.684 mol of carbon dioxide at s.t.p. is 15.3 L
<span>We can use the heat
equation,
Q = mcΔT </span>
<span>Where Q is
the amount of energy transferred (J), m is the mass of the
substance (kg), c is the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is the temperature
difference (°C).</span>
Density = mass / volume
The density of water = 0.997 g/mL
<span>Hence mass of 1.25 L (1250 mL) of water = 0.997 g/mL x 1250 mL</span>
<span> = 1246.25 g</span>
Specific heat capacity of water = 4.186 J<span>/ g °C.</span>
Let's assume that there is no heat loss to the surrounding and the final temperature is T.
By applying the equation,
5430 J = 1246.25 g x 4.186 J/ g °C x (T - 23) °C
(T - 23) °C = 5430 J / 1246.25 g x 4.186 J/ g °C
(T - 23) °C = 1.04 °C
T = 1.04 °C + 23 °C
T = 24.04 °C
Hence, the final temperature of the water is 24.04 °C.
Explanation:
2H2 + O2 = 2H2O
2mol. 1mol. 2mol
2mol reacts with 1mol
13mol reacts with x
x=<u>13mol</u><u> </u><u>×</u><u> </u><u>1mol</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>2mol</u>
x= <u>13mol</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>2mol
x= 6.5mol of oxygen