Answer:
The statement describes a process involved in the evolution of Earth’s early atmosphere would be:
Cyanobacteria transformed carbon dioxide in the atmosphere into oxygen during photosynthesis
Hope it helped :3
Answer: A) Water Explanation: Water molecules are polar molecules
Answer:
20 g/mol
Explanation:
We can use <em>Graham’s Law of diffusion</em>:
The rate of diffusion (<em>r</em>) of a gas is inversely proportional to the square root of its molar mass (<em>M</em>).

If you have two gases, the ratio of their rates of diffusion is

Squaring both sides, we get

Solve for <em>M</em>₂:



Answer:
Electronegativity is a measure of an atom's ability to attract shared electrons to itself. On the periodic table, electronegativity generally increases as you move from left to right across a period and decreases as you move down a group.
Explanation:
Hope it is helpful....
Answer : The ratio of the concentration of substance A inside the cell to the concentration outside is, 296.2
Explanation :
The relation between the equilibrium constant and standard Gibbs free energy is:
![\Delta G^o=-RT\times \ln Q\\\\\Delta G^o=-RT\times \ln (\frac{[A]_{inside}}{[A]_{outside}})](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D-RT%5Ctimes%20%5Cln%20Q%5C%5C%5C%5C%5CDelta%20G%5Eo%3D-RT%5Ctimes%20%5Cln%20%28%5Cfrac%7B%5BA%5D_%7Binside%7D%7D%7B%5BA%5D_%7Boutside%7D%7D%29)
where,
= standard Gibbs free energy = -14.1 kJ/mol
R = gas constant = 8.314 J/K.mol
T = temperature = 
Q = reaction quotient
= concentration inside the cell
= concentration outside the cell
Now put all the given values in the above formula, we get:
![-14.1\times 10^3J/mol =-(8.314J/K.mol)\times (298K)\times \ln (\frac{[A]_{inside}}{[A]_{outside}})](https://tex.z-dn.net/?f=-14.1%5Ctimes%2010%5E3J%2Fmol%20%3D-%288.314J%2FK.mol%29%5Ctimes%20%28298K%29%5Ctimes%20%5Cln%20%28%5Cfrac%7B%5BA%5D_%7Binside%7D%7D%7B%5BA%5D_%7Boutside%7D%7D%29)
![\frac{[A]_{inside}}{[A]_{outside}}=296.2](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5D_%7Binside%7D%7D%7B%5BA%5D_%7Boutside%7D%7D%3D296.2)
Thus, the ratio of the concentration of substance A inside the cell to the concentration outside is, 296.2