1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
postnew [5]
3 years ago
6

When the equation 3x + 2y = 7 is expressed in the form ax+by+c=0, indicate the values of a , b and c *

Mathematics
1 answer:
Leviafan [203]3 years ago
4 0

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

3x + 2y = 7

Subtract sides 7

3x + 2y - 7 = 7 - 7

3x + 2y - 7 = 0

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Compare :

ax + by + c = 0

3x + 2y - 7 = 0

Thus ;

a = 3 \:  \: , \:  \: b = 2 \:  \: , \:  \: c =  - 7

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

So the correct answer is the third option .

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

You might be interested in
which of the following best describes the line the arrow is pointing to in the regular pentagon below? A. Leg B. Diagonal C. Bas
Tomtit [17]
It would be B. Diagonal
8 0
4 years ago
6.4f 24 water bottles weigh 30 pounds, how much would a shipment of 150 water bottles weigh?​
Marizza181 [45]

Answer:

120 pounds

Step-by-step explanation:

24÷30 =0.8

0.8 x 150= 120 pounds

7 0
2 years ago
How to solve this trig
n200080 [17]

Hi there!

To find the Trigonometric Equation, we have to isolate sin, cos, tan, etc. We are also given the interval [0,2π).

<u>F</u><u>i</u><u>r</u><u>s</u><u>t</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

What we have to do is to isolate cos first.

\displaystyle  \large{ cos \theta =  -  \frac{1}{2} }

Then find the reference angle. As we know cos(π/3) equals 1/2. Therefore π/3 is our reference angle.

Since we know that cos is negative in Q2 and Q3. We will be using π + (ref. angle) for Q3. and π - (ref. angle) for Q2.

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>2</u>

\displaystyle \large{ \pi -  \frac{ \pi}{3}  =  \frac{3 \pi}{3}  -  \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{2 \pi}{3} }

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi  +   \frac{ \pi}{3}  =  \frac{3 \pi}{3}   +   \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{4 \pi}{3} }</u>

Both values are apart of the interval. Hence,

\displaystyle \large \boxed{ \theta =  \frac{2 \pi}{3} , \frac{4 \pi}{3} }

<u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

Isolate sin(4 theta).

\displaystyle \large{sin 4 \theta =  -  \frac{1}{ \sqrt{2} } }

Rationalize the denominator.

\displaystyle \large{sin4 \theta =  -  \frac{ \sqrt{2} }{2} }

The problem here is 4 beside theta. What we are going to do is to expand the interval.

\displaystyle \large{0 \leqslant  \theta < 2 \pi}

Multiply whole by 4.

\displaystyle \large{0 \times 4 \leqslant  \theta \times 4 < 2 \pi \times 4} \\  \displaystyle \large \boxed{0 \leqslant 4 \theta < 8 \pi}

Then find the reference angle.

We know that sin(π/4) = √2/2. Hence π/4 is our reference angle.

sin is negative in Q3 and Q4. We use π + (ref. angle) for Q3 and 2π - (ref. angle for Q4.)

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi +  \frac{ \pi}{4}  =  \frac{ 4 \pi}{4}  +  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{  \frac{5 \pi}{4} }</u>

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{2 \pi -  \frac{ \pi}{4}  =  \frac{8 \pi}{4}  -  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{ \frac{7 \pi}{4} }

Both values are in [0,2π). However, we exceed our interval to < 8π.

We will be using these following:-

\displaystyle \large{ \theta + 2 \pi k =  \theta \:  \:  \:  \:  \:  \sf{(k  \:  \: is \:  \: integer)}}

Hence:-

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>3</u>

\displaystyle \large{ \frac{5 \pi}{4}  + 2 \pi =  \frac{13 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 4\pi =  \frac{21 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 6\pi =  \frac{29 \pi}{4} }

We cannot use any further k-values (or k cannot be 4 or higher) because it'd be +8π and not in the interval.

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{ \frac{ 7 \pi}{4}  + 2 \pi =  \frac{15 \pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 4 \pi =  \frac{23\pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 6 \pi =  \frac{31 \pi}{4} }

Therefore:-

\displaystyle \large{4 \theta =  \frac{5 \pi}{4} , \frac{7 \pi}{4} , \frac{13\pi}{4} , \frac{21\pi}{4} , \frac{29\pi}{4}, \frac{15 \pi}{4} , \frac{23\pi}{4} , \frac{31\pi}{4}  }

Then we divide all these values by 4.

\displaystyle \large \boxed{\theta =  \frac{5 \pi}{16} , \frac{7 \pi}{16} , \frac{13\pi}{16} , \frac{21\pi}{16} , \frac{29\pi}{16}, \frac{15 \pi}{16} , \frac{23\pi}{16} , \frac{31\pi}{16}  }

Let me know if you have any questions!

3 0
3 years ago
Quadrilateral RPQS is a rectangle. Label the missing measures.
Taya2010 [7]

Answer:

Part 1) PR=9\ units

Part 2) PQ=12\ units

Part 3) PS=15\ units

part 4) QR=15\ units

Part 5) RT=7.5\ units

Step-by-step explanation:

we know that

In a rectangle opposite sides are parallel and congruent

The measure of each interior angle is 90 degrees

The diagonals are congruent and bisect each other

step 1

Find the length of side PR

we know that

PR=QS ----> by opposite sides

we have

QS=9\ units

therefore

PR=9\ units

step 2

Find the length of side PQ

we know that

PQ=RS ----> by opposite sides

we have

RS=12\ units

therefore

PQ=12\ units

step 3

Find the length of diagonal PS

we know that

PS=2PT---> the diagonals bisect each other

we have

PT=7.5\ units ---> given problem

therefore

PS=2(7.5)=15\ units

step 4

Find the length of diagonal QR

we know that

QR=PS---> the diagonals are congruent

we have

PS=15\ units

therefore

QR=15\ units

step 5

Find the length of RT

we know that

QR=2RT---> the diagonals bisect each other

we have

QR=15\ units

substitute

15=2RT\\RT=7.5\ units

7 0
3 years ago
Find lim h-&gt;0 f(9+h)-f(9)/h if f(x)=x^4 a. 23 b. -2916 c. 2916 d. 2925
Svetach [21]

\displaystyle\lim_{h\to0}\frac{f(9+h)-f(9)}h = \lim_{h\to0}\frac{(9+h)^4-9^4}h

Carry out the binomial expansion in the numerator:

(9+h)^4 = 9^4+4\times9^3h+6\times9^2h^2+4\times9h^3+h^4

Then the 9⁴ terms cancel each other, so in the limit we have

\displaystyle \lim_{h\to0}\frac{4\times9^3h+6\times9^2h^2+4\times9h^3+h^4}h

Since <em>h</em> is approaching 0, that means <em>h</em> ≠ 0, so we can cancel the common factor of <em>h</em> in both numerator and denominator:

\displaystyle \lim_{h\to0}(4\times9^3+6\times9^2h+4\times9h^2+h^3)

Then when <em>h</em> converges to 0, each remaining term containing <em>h</em> goes to 0, leaving you with

\displaystyle\lim_{h\to0}\frac{f(9+h)-f(9)}h = 4\times9^3 = \boxed{2916}

or choice C.

Alternatively, you can recognize the given limit as the derivative of <em>f(x)</em> at <em>x</em> = 9:

f'(x) = \displaystyle\lim_{h\to0}\frac{f(x+h)-f(x)}h \implies f'(9) = \lim_{h\to0}\frac{f(9+h)-f(9)}h

We have <em>f(x)</em> = <em>x</em> ⁴, so <em>f '(x)</em> = 4<em>x</em> ³, and evaluating this at <em>x</em> = 9 gives the same result, 2916.

8 0
3 years ago
Other questions:
  • Use the graph to find the cost of 6 show tickets.
    15·1 answer
  • What is the are of a circle with circumference of 16pi.
    9·2 answers
  • Paul is making loaves of raisin bread to sell at a fundraising event. The recipe calls for 1/3 cups of raisins for each loaf, an
    14·2 answers
  • If a car traveled 1,001 kilometers on 151.8 liters
    5·1 answer
  • Hi, can you please help?
    7·1 answer
  • NEED HELP ASAP NO LINKS!!!!!!!!!!!!!!!!!!!!!!On the first day it was posted online, a music video got 1500 views. The number of
    6·1 answer
  • What kind of triangle is this?
    7·2 answers
  • Find the distance covered in 10 revolution by a road roller of diameter 4.2m​
    10·1 answer
  • HELP NEEDED PLEASE!!!! This math question confuses me. I thought the line didn't pass through any other point but I cant figure
    11·1 answer
  • Solve 4x-4 &lt; 7x - 19
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!