Answer:
The image is (-18,0)
Step-by-step explanation:
Here, we want to find the image of the given point after dilation by the given scale factor
Mathematically, given a point with the pre-image (x,y) going under the dilation of scale factor k, centered at the origin, the coordinates of the image will be;
(kx , ky)
Applying this in the given scenario, we have
(2(-9) , 2(0))
= (-18,0)
You would put it up into proportions so 33 over 55 equals x over 100. Then you would cross multiply so 55x=3300. Then you would divide 3300 by 55 and get 60%.
Probability a gets a head = 1/2
.. .. .. b .. .. ... .. = P(a gets tail) * 1/2 = 1/2 * 1/2 = 1/4
.. ... . .. c .. .. .. .. . = P(and and b gets tail) * 1/2 = 1/4 * 1/2 = 1/8
Step-by-step explanation:
We have got the lines :

Both lines intercept the x-axis in the point :

In all point from x-axis the y-component is equal to 0.

We replace the I point in the lines equations:

From the first equation :

From the second equation :

Then 
Finally :

y = ax + b and y = cx + d have the same x-intercept ⇔ad=bc
f(h(x))= 2x -21
Step-by-step explanation:
f(x)= x^3 - 6
h(x)=\sqrt[3]{2x-15}
WE need to find f(h(x)), use composition of functions
Plug in h(x)
f(h(x))=f(\sqrt[3]{2x-15})
Now we plug in f(x) in f(x)
f(h(x))=f(\sqrt[3]{2x-15})=(\sqrt[3]{2x-15})^3 - 6
cube and cube root will get cancelled
f(h(x))= 2x-15 -6= 2 x-21