Answer:

Step-by-step explanation:
Hi there!
<u>What we need to know:</u>
- Linear equations are typically organized in slope-intercept form:
where m is the slope of the line and b is the y-intercept (the value of y when the line crosses the y-axis)
- Parallel lines will always have the same slope but different y-intercepts.
<u>1) Determine the slope of the parallel line</u>
Organize 3x = 2y into slope-intercept form. Why? So we can easily identify the slope, m.

Switch the sides

Divide both sides by 2 to isolate y

Now that this equation is in slope-intercept form, we can easily identify that
is in the place of m. Therefore, because parallel lines have the same slope, the parallel line we're solving for now will also have the slope
. Plug this into
:

<u>2) Determine the y-intercept</u>

Plug in the given point, (4,0)

Subtract both sides by 6

Therefore, -6 is the y-intercept of the line. Plug this into
as b:

I hope this helps!
Might have to experiment a bit to choose the right answer.
In A, the first term is 456 and the common difference is 10. Each time we have a new term, the next one is the same except that 10 is added.
Suppose n were 1000. Then we'd have 456 + (1000)(10) = 10456
In B, the first term is 5 and the common ratio is 3. From 5 we get 15 by mult. 5 by 3. Similarly, from 135 we get 405 by mult. 135 by 3. This is a geom. series with first term 5 and common ratio 3. a_n = a_0*(3)^(n-1).
So if n were to reach 1000, the 1000th term would be 5*3^999, which is a very large number, certainly more than the 10456 you'd reach in A, above.
Can you now examine C and D in the same manner, and then choose the greatest final value? Safe to continue using n = 1000.
You have to multiply the total number of women by .15 and you will get your answer. 1,350,000 is the answer
1,609.35 meters are in a mile.
3,600 seconds are in an hour.
1,609.35meters x 60miles = 96,561 meters per hour
96,561meters per hour / 3,600seconds = 26.82 meters per second
Answer:
Total cost = charge fee + 55× no. of hours
Let h represents number of hours
Total cost = 35 + (55×h)