Answer:
- (-1, -32) absolute minimum
- (0, 0) relative maximum
- (2, -32) absolute minimum
- (+∞, +∞) absolute maximum (or "no absolute maximum")
Step-by-step explanation:
There will be extremes at the ends of the domain interval, and at turning points where the first derivative is zero.
The derivative is ...
h'(t) = 24t^2 -48t = 24t(t -2)
This has zeros at t=0 and t=2, so that is where extremes will be located.
We can determine relative and absolute extrema by evaluating the function at the interval ends and at the turning points.
h(-1) = 8(-1)²(-1-3) = -32
h(0) = 8(0)(0-3) = 0
h(2) = 8(2²)(2 -3) = -32
h(∞) = 8(∞)³ = ∞
The absolute minimum is -32, found at t=-1 and at t=2. The absolute maximum is ∞, found at t→∞. The relative maximum is 0, found at t=0.
The extrema are ...
- (-1, -32) absolute minimum
- (0, 0) relative maximum
- (2, -32) absolute minimum
- (+∞, +∞) absolute maximum
_____
Normally, we would not list (∞, ∞) as being an absolute maximum, because it is not a specific value at a specific point. Rather, we might say there is no absolute maximum.
I need to see the directions
P+o-wt=4b
-wt=4b-p-o
t=(4b-p-o)/-w
mark as brainliest if it’s helpful
Answer:
Volume = 120 cubic cm
Step-by-step explanation:
We would apply the formula for determining the volume of a square bases pyramid which is expressed as
Volume = 1/3 x base area x height
From the diagram,
length of square base = 6 cm
The base area = 6^2 = 36
height = 10
Thus,
Volume = 1/3 x 3/6 x 10
Volume = 120 cubic cm
I hope this help you! :)

By the fundamental theorem of calculus,

Now the arc length over an arbitrary interval

is

But before we compute the integral, first we need to make sure the integrand exists over it.

is undefined if

, so we assume

and for convenience that

. Then