Answer:
Transitive property of equality
Step-by-step explanation:
Let A be any non empty set and R is any subset of the Cartesian product A × A. Then, R is a relation on A.
The relation R is said to be a transitive relation if (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R.
It is given that ABC = DEF and DEF = XYZ, then ABC = XYZ.
This shows the transitive property of equality.
Ok so you would just take the two fractions and simply if needed and that the answer!
Answer:
Th Range is [0, -∞)
Step-by-step explanation:
f(x) = 2 - x
w(x) = x - 2
We want to find the range of (f * w)(x).
First, we need to find (f * w)(x), which is the multiplication of the function f(x) and the function w(x). Lets use algebra to find (f * w)(x):

This is a quadratic function (U shaped), or a parabola. The graph is attached.
The range is the set of y-values for which the function is defined.
We see from the graph that the parabola is upside down and the highest value is y = 0 and lowest goes towards negative infinity. So the range is from 0 to negative infinity. Or,
0 < y < ∞
In interval notation, that would be:
[0, -∞)
The rule for quotients of similar bases with different exponents is:
(a^c)/(a^b)=a^(c-b) in this case:
15^18/(15^3)=15^15