1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna1 [17]
3 years ago
8

Find the distance between the two points in simplest radical form. (4, 4) { and } (8, -3)

Mathematics
1 answer:
Temka [501]3 years ago
5 0

Answer:

привет, я не знаю, как ответить на вопрос

Step-by-step explanation:

You might be interested in
PLss answer I will give brainliest
marshall27 [118]

Answer:

I pretty sure it's 3/14

Step-by-step explanation:

There are 6 small fish and 8 large fish- find the total. 6+8=14 (14 will be the denominator)

Half of the small fish are red so 6/2=3 (3 is the numerator)

The probability of you picking one small red fish is 3/14

7 0
3 years ago
SOMEONE HELPPPPPPPPPPPPPPP!!!!
ziro4ka [17]
DE=2KL
8x+12=2(10x-9)
8x+12=20x-18
30=12x
x= 1 1/2
8x+12=DE
8(1.5)+12
12+12=DE
24=DE

Therefore, the measurement of DE is 24.
4 0
3 years ago
A certain library assesses fines for overdue books as follows. On the first day that a book is overdue, the total fine is $0.10.
HACTEHA [7]

Answer:

Option B. $0.70

Step-by-step explanation:

First day fine = $0.10

Second day fine (doubled or $0.30 which is lesser)

= $0.10 + $0.10           [$0.10 is lesser than $0.30]

= $0.20

Third day fine = $0.20 + $0.20           [ $0.20 is lesser than $0.30]

                      = $0.40

Fourth day fine = $0.40 + $0.30  = $0.70

[$0.30 is cheaper than doubling the amount $0.40 + $0.40]

Therefore, the total fine for a book on the fourth day is $0.70

4 0
3 years ago
SOLVE. integration of (1+v^2) /(1-v^3)
s2008m [1.1K]
\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv

1-v^3=(1-v)(1+v+v^2)
\implies\dfrac{1+v^2}{1-v^3}=\dfrac a{1-v}+\dfrac{b_0+b_1v}{1+v+v^2}
\implies\dfrac{1+v^2}{1-v^3}=\dfrac{a(1+v+v^2)+(b_0+b_1v)(1-v)}{1-v^3}
\implies 1+v^2=(a+b_0)+(a-b_0+b_1)v+(a-b_1)v^2
\implies\begin{cases}a+b_0=1\\a-b_0+b_1=0\\a-b_1=1\end{cases}\implies a=\dfrac23,b_0=\dfrac13,b_1=-\dfrac13

So,

\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv=\dfrac23\int\frac{\mathrm dv}{1-v}+\dfrac13\int\frac{1-v}{1+v+v^2}\,\mathrm dv

The first integral is easy. For the second, since the derivative of the denominator is (1+v+v^2)=1+2v, we can add and subtract 3v to get

\dfrac{1-v}{1+v+v^2}=\dfrac{1+2v-3v}{1+v+v^2}=\dfrac{1+2v}{1+v+v^2}-\dfrac{3v}{1+v+v^2}

and for the first term employ a substitution. For the remaining term, we can complete the square in the denominator, then use a trigonometric substitution:

\displaystyle\int\frac{1+2v}{1+v+v^2}\,\mathrm dv=\int\frac{\mathrm dt}t

where t=1+v+v^2\implies\mathrm dt=(1+2v)\,\mathrm dv, and

\displaystyle\int\frac{3v}{1+v+v^2}\,\mathrm dv=3\int\frac v{\left(v+\frac12\right)^2+\frac34}\,\mathrm dv

Then taking v+\dfrac12=\dfrac{\sqrt3}2\tan s\implies \mathrm dv=\dfrac{\sqrt3}2\sec^2s\,\mathrm ds gives

\displaystyle3\int\frac v{\left(v+\frac12\right)^2+\frac34}\,\mathrm dv=3\int\frac{\frac{\sqrt3}2\tan s-\frac12}{\left(\frac{\sqrt3}2\tan s\right)^2+\frac34}\left(\frac{\sqrt3}2\sec^2s\right)\,\mathrm ds
=\displaystyle\sqrt3\int(\sqrt3\tan s-1)\,\mathrm ds
=\displaystyle3\int\tan s\,\mathrm ds-\sqrt3\int\mathrm ds

Now we're ready to wrap up.

\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv=\dfrac23\int\frac{\mathrm dv}{1-v}+\dfrac13\int\frac{1-v}{1+v+v^2}\,\mathrm dv
=\displaystyle-\frac23\ln|1-v|+\frac13\left(\int\frac{1+2v}{1+v+v^2}\,\mathrm dv-\int\frac{3v}{1+v+v^2}\,\mathrm dv\right)
=\displaystyle-\frac23\ln|1-v|+\frac13\int\frac{\mathrm dt}t-\frac13\left(3\int\tan s\,\mathrm ds-\sqrt3\int\mathrm ds\right)
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|t|-\int\tan s\,\mathrm ds+\frac1{\sqrt3}\int\mathrm ds
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|1+v+v^2|+\ln|\cos s|+\frac s{\sqrt3}+C
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|1+v+v^2|+\ln\left|\frac{\sqrt3}{2\sqrt{1+v+v^2}}\right|+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C

This can be simplified a bit using some properties of logarithms to obtain

=\displaystyle-\frac23\ln|1-v|+\frac13\ln(1+v+v^2)+\left(\ln\frac{\sqrt3}2-\frac12\ln(1+v+v^2)\right)+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C
=\displaystyle-\frac23\ln|1-v|-\frac16\ln(1+v+v^2)+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C
6 0
3 years ago
Anika buys a pair of shin guards for $8.58 and serveral pairs of soccer socks for $4.29 per pair. If she spends 25.74 before tax
Lena [83]

Answer:

4 socks

Step-by-step explanation:

4 0
4 years ago
Other questions:
  • Earlier we analyzed the revenue earned by the junior class at East High School from their discount card fundraiser. They had
    10·1 answer
  • Nyromi redeemed 250 shares of stock she owned in the fund shown below. Name of Fund NAV Offer Price Upton Group $18.47 $18.96 Wh
    7·2 answers
  • The ages Edna, and Elsa are consecutive integers. The sum of their ages is 114. What are their ages?
    5·1 answer
  • Need the answer for #'s 2 and 3 please. 7th grade math.
    6·1 answer
  • 5. True or False:
    8·1 answer
  • (-x²+9) + (-3x² -11x+4)
    7·1 answer
  • HELP HELP HELP pleaseesjnsnsns
    15·2 answers
  • Evaluate f(x)=2x-5 when x=-4
    13·1 answer
  • 11. Patrick is buying a new car. He can choose the body style, color, and
    5·1 answer
  • Tom went bowling with $27 to spend.He rented shoes for $5.75 and paid $4.25 for each game.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!