Using translation concepts, considering the vertices (x,y) of figure p, the following rule is applied to find the vertices of figure r.
(x,y) -> (x + 4, y).
<h3>What is a translation?</h3>
A translation is represented by a change in the function graph, according to operations such as multiplication or sum/subtraction either in it’s definition or in it’s domain. Examples are shift left/right or bottom/up, vertical or horizontal stretching or compression, and reflections over the x-axis or the y-axis.
When a figure is shifted 4 units to the right, <u>4 is added to the x-coordinate</u>, hence, considering the vertices (x,y) of figure p, the following rule is applied to find the vertices of figure r.
(x,y) -> (x + 4, y).
More can be learned about translation concepts at brainly.com/question/28416763
#SPJ1
Answer:
15.5 ft
Step-by-step explanation:
The geometry of the problem can be modeled by a right triangle with hypotenuse 16 ft and one side length of 4 ft. If x represents the height of the ladder on the building, then the Pythagorean theorem tells us ...
x^2 + (4 ft)^2 = (16 ft)^2
x^2 = 240 ft^2 . . . . . . subtract 16 ft^2
x ≈ 15.5 ft . . . . . . . . . . take the square root
The top of the ladder is about 15.5 ft above the ground.