Answer:
a) 0 seconds.
b) The stunt diver is in the air for 2.81 seconds.
Step-by-step explanation:
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:
![x_{1} = \frac{-b + \sqrt{\Delta}}{2*a}](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20%5Cfrac%7B-b%20%2B%20%5Csqrt%7B%5CDelta%7D%7D%7B2%2Aa%7D)
![x_{2} = \frac{-b - \sqrt{\Delta}}{2*a}](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20%5Cfrac%7B-b%20-%20%5Csqrt%7B%5CDelta%7D%7D%7B2%2Aa%7D)
![\Delta = b^{2} - 4ac](https://tex.z-dn.net/?f=%5CDelta%20%3D%20b%5E%7B2%7D%20-%204ac)
Height of the diver after t seconds:
![h(t) = -4.9t^2 + 12t + 5](https://tex.z-dn.net/?f=h%28t%29%20%3D%20-4.9t%5E2%20%2B%2012t%20%2B%205)
a) How long is the stunt diver above 15 m?
Quadratic equation with
, so the parabola is concave down, and it will be above 15m between the two roots that we found for
. So
![h(t) = -4.9t^2 + 12t + 5](https://tex.z-dn.net/?f=h%28t%29%20%3D%20-4.9t%5E2%20%2B%2012t%20%2B%205)
![15 = -4.9t^2 + 12t + 5](https://tex.z-dn.net/?f=15%20%3D%20-4.9t%5E2%20%2B%2012t%20%2B%205)
![-4.9t^2 + 12t - 10 = 0](https://tex.z-dn.net/?f=-4.9t%5E2%20%2B%2012t%20-%2010%20%3D%200)
Quadratic equation with
. Then
![\Delta = 12^{2} - 4(-4.9)(-10) = -52](https://tex.z-dn.net/?f=%5CDelta%20%3D%2012%5E%7B2%7D%20-%204%28-4.9%29%28-10%29%20%3D%20-52)
Negative
, which means that the stunt diver is never above 15m, so 0 seconds.
b) How long is the stunt diver in the air?
We have to find how long it takes for the diver to hit the ground, that is, t for which
. So
![h(t) = -4.9t^2 + 12t + 5](https://tex.z-dn.net/?f=h%28t%29%20%3D%20-4.9t%5E2%20%2B%2012t%20%2B%205)
![0 = -4.9t^2 + 12t + 5](https://tex.z-dn.net/?f=0%20%3D%20-4.9t%5E2%20%2B%2012t%20%2B%205)
![-4.9t^2 + 12t + 5 = 0](https://tex.z-dn.net/?f=-4.9t%5E2%20%2B%2012t%20%2B%205%20%3D%200)
Quadratic equation with
. Then
![\Delta = 12^{2} - 4(-4.9)(5) = 242](https://tex.z-dn.net/?f=%5CDelta%20%3D%2012%5E%7B2%7D%20-%204%28-4.9%29%285%29%20%3D%20242)
![x_{1} = \frac{-12 + \sqrt{242}}{2*(-4.9)} = -0.36](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20%5Cfrac%7B-12%20%2B%20%5Csqrt%7B242%7D%7D%7B2%2A%28-4.9%29%7D%20%3D%20-0.36)
![x_{2} = \frac{-12 - \sqrt{242}}{2*(4.9)} = 2.81](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20%5Cfrac%7B-12%20-%20%5Csqrt%7B242%7D%7D%7B2%2A%284.9%29%7D%20%3D%202.81)
Time is a positive measure, so we take 2.81.
The stunt diver is in the air for 2.81 seconds.