Because they change over time
Answer:
Logistic Growth Model Part 1: Background: Logistic Modeling. A biological population with plenty of food, space to grow, and no threat from predators, tends to grow at a rate that is proportional to the population-- that is, in each unit of time, a certain percentage of the individuals produce new individuals. If reproduction takes place more or less continuously, then this growth rate is represented by
Explanation:
Answer: mountain roads are winding and gently sloping in order to reduce the effect of steepness which causes more downward gravitational pull to the vehicle on it . A steeper sloped road would slow the car down to a greater extent that an gently sloping one.
Explanation:
It includes killing bacteria and storing partially digested food
Answer:
c. 1:2:1
The results are consistent with incomplete dominance for this trait, with pink flowers being heterozygous.
Explanation:
If flower color were determined by a gene showing incomplete dominance, the possible genotypes and phenotypes are as follows:
- RR- red
- ww - white
- Rw - pink
If pink sweet peas are self-pollinated, then a cross between two heterozygous individuals is done (Rw x Rw).
<u>From this cross the expected ratios are:</u>
- 1/4 RR (red)
- 2/4 Rw (pink)
- 1/4 ww (white)
So the null hypothesis is that the observed results exhibit a 1:2:1 ratio.
<h3><u>Chi square test</u></h3>

<u>The observed frequencies were:</u>
Total 150
<u>The expected frequencies for our null hypothesis are:</u>
- 1/4 x 150 = 37.5 Red
- 2/4 x 150 = 75 Pink
- 1/4 x 150 = 37.5 white


The degrees of freedom (DF) are calculated as number of phenotypes - 1; in this case DF = 3-1 = 2.
If we look at the Chi square table, for 2 DF and a probability of p0.05, the critical value is 5.991
Our X^2 value of 0.5067 is less than the critical value, so we do not reject the null hypothesis. The results are consistent with incomplete dominance for this trait, with pink flowers being heterozygous.