Answer:
Absolute error = $25
Step-by-step explanation:
Given that:
Amount spent by John on shopping trip = $75
Estimated amount to spent on shopping trip = $100
Absolute error = Approximate value - Exact value
Here,
Approximate value = $100
Exact value = $75
Absolute error = 100 - 75
Absolute error = $25
Percentage = 
Percentage = 
Percentage = 33.33%
Hence,
Absolute error = $25
Using the normal distribution, there is a 0.2076 = 20.76% probability that the proportion of persons with a college degree will differ from the population proportion by greater than 3%.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
- By the Central Limit Theorem, for a proportion p in a sample of size n, the sampling distribution of sample proportion is approximately normal with mean
and standard deviation
, as long as
and
.
The proportion estimate and the sample size are given as follows:
p = 0.45, n = 437.
Hence the mean and the standard error are:
The probability that the proportion of persons with a college degree will differ from the population proportion by greater than 3% is <u>2 multiplied by the p-value of Z when X = 0.45 - 0.03 = 0.42</u>.
Hence:

By the Central Limit Theorem:

Z = (0.42 - 0.45)/0.0238
Z = -1.26
Z = -1.26 has a p-value of 0.1038.
2 x 0.1038 = 0.2076.
0.2076 = 20.76% probability that the proportion of persons with a college degree will differ from the population proportion by greater than 3%.
More can be learned about the normal distribution at brainly.com/question/28159597
#SPJ1
Answer:
use the formula sn= n(a1+an)/2
Step-by-step explanation:
2982=28(228+an)/2
5964=28(228+an)
5964/28=228+an
213=228+an
an=-15(last term)
to find difference use formula
an = a+(n-1)d
-15=228+(28-1)d
-243=27d
d=-243/27
d=-9
arithmetic sequence can be found be keep on subtracting 9 from 228
hence the arithmetic sequence is
228, 219, 210, 201, 192, 183, 174........-15