1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rasek [7]
3 years ago
9

Determine whether the graph represents a linear or nonlinear function

Mathematics
2 answers:
AfilCa [17]3 years ago
6 0
I think it is liner because it is a straight line no curves
miv72 [106K]3 years ago
3 0
Linear is straight lines , this would be linear.
You might be interested in
18x=36 with a full explanation and I will give you brainlyest
iris [78.8K]

Answer:−18x>36

Divide both sides by −18. Since −18 is negative, the inequality direction is changed.

x< −18

36

​

Divide 36 by −18 to get −2.

x<−2

Step-by-step explanation:

Hope this helps!

5 0
2 years ago
Help pls just help i can't take this anymore​
Romashka-Z-Leto [24]
It is C
Ksixkskxksmxmamlsldllxlallzlskmclaldlldle
4 0
3 years ago
Read 2 more answers
Find the limit
Lana71 [14]

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

7 0
3 years ago
Read 2 more answers
7 times what gives me 36
Zolol [24]
To get the answer, divide 36 by 7. And the answer of that is 5.1428571428571429
8 0
3 years ago
Brian and 3 of his friends need to collect a total of 1,548 pounds of newspaper for a recycling drive. They will each collect th
KonstantinChe [14]

4 people are collecting

1548 /4

387 lbs


7 0
3 years ago
Read 2 more answers
Other questions:
  • The area of a closet floor measures 3 yards by 3 yards and each custom tile that makes up the flooring is 1 1/2 square feet. How
    6·2 answers
  • A motorcycle and a car leave an intersection at the same time. the motorcycle heads north at an average speed of 20 miles per​ h
    9·1 answer
  • Find square root by prime factorization method <br>2089
    13·1 answer
  • Write two expressions where the solution is 41
    5·1 answer
  • Write each fraction in simplest form
    5·1 answer
  • 3 2/3 divides by 2 1/6
    13·2 answers
  • Which expression is equivalent to 1/4x+3-1/3x+(2)
    14·1 answer
  • Can someone please help someone who is good at geometry because I’m not sad face :(
    14·1 answer
  • All parallellograms are squares true or false​
    13·1 answer
  • Si un vendedor gana $ 450 por cada venta de $ 50 000, ¿cuál es su tasa de comisión?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!