STEP
1
:
y
Simplify —
3
Equation at the end of step
1
:
y
(((18•(x5))•(y3))+((6•(x2))•(y4)))+((((24•(x6))•—)•x)•y)
3
STEP
2
:
Equation at the end of step
2
:
y
(((18•(x5))•(y3))+((6•(x2))•(y4)))+((((23•3x6)•—)•x)•y)
3
STEP
3
:
Canceling Out:
3.1 Canceling out 3 as it appears on both sides of the fraction line
Equation at the end of step
3
:
(((18•(x5))•(y3))+((6•(x2))•(y4)))+((8x6y•x)•y)
STEP
4
:
Equation at the end of step
4
:
(((18•(x5))•(y3))+((2•3x2)•y4))+8x7y2
STEP
5
:
Equation at the end of step
5
:
(((2•32x5) • y3) + (2•3x2y4)) + 8x7y2
STEP
6
:
STEP
7
:
Pulling out like terms
7.1 Pull out like factors :
8x7y2 + 18x5y3 + 6x2y4 = 2x2y2 • (4x5 + 9x3y + 3y2)
Trying to factor a multi variable polynomial :
7.2 Factoring 4x5 + 9x3y + 3y2
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Final result :
2x2y2 • (4x5 + 9x3y + 3y2)
Answer:
$2,323.23
Step-by-step explanation:
Lets use the compound interest formula provided to solve this:

<em>P = initial balance</em>
<em>r = interest rate (decimal)</em>
<em>n = number of times compounded annually</em>
<em>t = time</em>
<em />
First, we will change 3% into its decimal form:
3% ->
-> 0.03
Now, plug the values into the equation:


After 5 years, you will have $2,323.23
If the pentagon is rotated 360° about the origin, that means the new figure will be exactly in the same position as the original image, because a rotation of 360° about the origin doesn't change the figure position or orientation.
So, if the vertex was located at (10, -8), the new figure will also have a vertex located at (10, -8).
Therefore the correct option is the fourth one.
Let x = the unknown number to get x = 6
Answer:
the probability that a sample of the 35 exams will have a mean score of 518 or more is <em> 0.934 </em>or<em> 93.4%</em>.
Step-by-step explanation:
This is s z-test because we have been given a sample that is large (greater than 30) and also a standard deviation. The z-test compares sample results and normal distributions. Therefore, the z-statistic is:
(520 - 518) / (180/√35)
= 0.0657
Therefore, the probability is:
P(X ≥ 0.0657) = 1 - P(X < 0.0657)
where
- X is the value to be standardised
Thus,
P(X ≥ 0.0657) = 1 - (520 - 518) / (180/√35)
= 1 - 0.0657
= 0.934
Therefore, the probability that a sample of the 35 exams will have a mean score of 518 or more is <em>0.934 or 93.4%</em>.