1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
krek1111 [17]
3 years ago
6

A ski lodge charges $26 per day for a pass and $1.50 for every ski lift ride. A second ski

Mathematics
1 answer:
malfutka [58]3 years ago
8 0

Answer:

32=40

26=39

Step-by-step explanation:

You might be interested in
Find the diameter of the circle with the given circumference.use 3.14 for pi<br><br> C=23 cm
zvonat [6]

Answer:

7.324840764

Step-by-step explanation:

23/3.14=7.324840764

7 0
3 years ago
Find all the complex roots. Write the answer in exponential form.
dezoksy [38]

We have to calculate the fourth roots of this complex number:

z=9+9\sqrt[]{3}i

We start by writing this number in exponential form:

\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}

Then, the exponential form is:

z=18e^{\frac{\pi}{3}i}

The formula for the roots of a complex number can be written (in polar form) as:

z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot\lbrack\cos (\frac{\theta+2\pi k}{n})+i\cdot\sin (\frac{\theta+2\pi k}{n})\rbrack\text{ for }k=0,1,\ldots,n-1

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.

To simplify the calculations, we start by calculating the fourth root of r:

r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}

<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>

Then, we calculate the arguments of the trigonometric functions:

\frac{\theta+2\pi k}{n}=\frac{\frac{\pi}{2}+2\pi k}{4}=\frac{\pi}{8}+\frac{\pi}{2}k=\pi(\frac{1}{8}+\frac{k}{2})

We can now calculate for each value of k:

\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}

Answer:

The four roots in exponential form are

z0 = 18^(1/4)*e^(i*π/8)

z1 = 18^(1/4)*e^(i*5π/8)

z2 = 18^(1/4)*e^(i*9π/8)

z3 = 18^(1/4)*e^(i*13π/8)

5 0
1 year ago
Can someone help me .
RUDIKE [14]

Answer:

b part is the correct answer

3 0
3 years ago
Simplify the expression<br>​
KonstantinChe [14]

Answer:

9/4

Step-by-step explanation:

5×|-2-7(3)|-2×17

5×|-2-21|-34

5×|-23|-34

5×23-34

115-34=81

22+sq rt(7×28) 28=4×7 sq rt= 2×2×7×7

22+2×7=22+14=36

81÷9/36÷9=9/4

7 0
3 years ago
Read 2 more answers
Z=a/b+c/d solve for A
PilotLPTM [1.2K]

Answer: a=\frac{b(zd-c)}{d}

Step-by-step explanation:

Having the following equation given in the exercise:

z=\frac{a}{b}+\frac{c}{d}

You can solve for "a" following this procedure:

1. You can apply the Subtraction property of equality and subtract \frac{c}{d} from both sides of the equation:

z-(\frac{c}{d})=\frac{a}{b}+\frac{c}{d}-(\frac{c}{d})\\\\z-\frac{c}{d}=\frac{a}{b}

2. Now you must subtract the terms on the left side of the equation. Notice that the Least Common Denominator is "d". Then:

\frac{zd-c}{d}=\frac{a}{b}

3. Finally, you can apply the Multiplication property of equality and multiply both sides of the equation by "b". So, you get:

(b)(\frac{zd-c}{d})=(\frac{a}{b})(b)\\\\a=\frac{b(zd-c)}{d}

6 0
3 years ago
Other questions:
  • List these numbers to least go greatest 0 , 8.5 , -3.4 , -1.5 , 8.45 ,1/2
    12·2 answers
  • 4 vd<br> 6 yd<br> 20 yd<br> Surface Area =
    6·2 answers
  • 45/100 in simplest form
    7·1 answer
  • The area of circle Z is 64 ft?
    12·1 answer
  • Sam works 5 days a week for 8 hours each day.He earns $8.00 per hour .How much money will he earn after 3 weeks?
    14·1 answer
  • Representative money has value because:
    12·1 answer
  • ms.watson earns more than $24 per hour. The inequalit x&gt;24 represent the situation.which statement best represent the solutio
    6·1 answer
  • Ashley earns $5 per hour babysitting. How much will she earn in 3 hours?
    15·1 answer
  • Two hot air balloons are traveling along the same path away from a town, beginning from different locations at the same time. He
    15·1 answer
  • Need help checking my work for Trigonometry. Will mark brainist!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!