1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kaylis [27]
3 years ago
9

4. A car is travelling 75 kilometers per hour. How many meters does the car travel in one

Mathematics
2 answers:
Paladinen [302]3 years ago
5 0

Answer:

1250 Meters

Step-by-step explanation:

75 kilometers divided by 60 minutes is 1.25 kilometers per minute.

1 kilometer = 1000 meters

Licemer1 [7]3 years ago
5 0

Answer:

75km/hr =75000

60 sec =1min,60 min=1hr

75000÷60=1250m

You might be interested in
Please answer this multiple choice question only if you know it! 40 points and brainliest!
Leni [432]

Answer:

reasonable conclusion , representative sample

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Help! ASAP! Can somebody help me evaluate this problem
grandymaker [24]
It's a computation. It would be 8!/3!(8-3)! If my memory serves me correctly.
5 0
3 years ago
A circle has a circumference of 138.16 meters. What is the diameter of the circle ?
Neporo4naja [7]
<span>circumference = 2 π r
138.16 = 2 π r
138.16/2π = 2π/2π r
21.98884694 =r
D</span><span>iameter = r X 2
</span>Diameter = <span><span>21.98884694</span> X 2</span>
Diameter = 43.97769388
7 0
3 years ago
Find the nth term of the sequence 7,25,51,85,127​
olya-2409 [2.1K]

Let <em>a </em>(<em>n</em>) denote the <em>n</em>-th term of the given sequence.

Check the forward differences, and denote the <em>n</em>-th difference by <em>b </em>(<em>n</em>). That is,

<em>b </em>(<em>n</em>) = <em>a </em>(<em>n</em> + 1) - <em>a </em>(<em>n</em>)

These so-called first differences are

<em>b</em> (1) = <em>a</em> (2) - <em>a</em> (1) = 25 - 7 = 18

<em>b</em> (2) = <em>a</em> (3) - <em>a</em> (2) = 51 - 25 = 26

<em>b </em>(3) = <em>a</em> (4) - <em>a</em> (3) = 85 - 51 = 34

<em>b</em> (4) = <em>a </em>(5) - <em>a</em> (4) = 127 - 85 = 42

Now consider this sequence of differences,

18, 26, 34, 42, …

and notice that the difference between consecutive terms in this sequence <em>b</em> is 8:

26 - 18 = 8

34 - 26 = 8

42 - 34 = 8

and so on. This means <em>b</em> is an arithmetic sequence, and in particular follows the rule

<em>b</em> (<em>n</em>) = 18 + 8 (<em>n</em> - 1) = 8<em>n</em> + 10

for <em>n</em> ≥ 1.

So we have

<em>a </em>(<em>n</em> + 1) - <em>a </em>(<em>n</em>) = 8<em>n</em> + 10

or, replacing <em>n</em> + 1 with <em>n</em>,

<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 1) + 8 (<em>n</em> - 1) + 10

<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 1) + 8<em>n</em> + 2

We can solve for <em>a</em> (<em>n</em>) by iteratively substituting:

<em>a</em> (<em>n</em>) = [<em>a</em> (<em>n</em> - 2) + 8 (<em>n</em> - 1) + 2] + 8<em>n</em> + 2

<em>a</em> (<em>n</em>) = <em>a </em>(<em>n</em> - 2) + 8 (<em>n</em> + (<em>n</em> - 1)) + 2×2

<em>a</em> (<em>n</em>) = [<em>a</em> (<em>n</em> - 3) + 8 (<em>n</em> - 2) + 2] + 8 (<em>n</em> + (<em>n</em> - 1)) + 2×2

<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 3) + 8 (<em>n</em> + (<em>n</em> - 1) + (<em>n</em> - 2)) + 3×2

and so on. The pattern should be clear; we end up with

<em>a</em> (<em>n</em>) = <em>a</em> (1) + 8 (<em>n</em> + (<em>n</em> - 1) + … + 3 + 2) + (<em>n</em> - 1)×2

The middle group is the sum,

\displaystyle 8\sum_{k=2}^nk=8\sum_{k=1}^nk-8=\frac{8n(n+1)}2-8=4n^2+4n-8

so that

<em>a</em> (<em>n</em>) = <em>a</em> (1) + (4<em>n</em> ² + 4<em>n</em> - 8) + 2 (<em>n</em> - 1)

<em>a</em> (<em>n</em>) = 4<em>n</em> ² + 6<em>n</em> - 3

4 0
3 years ago
What is m∠C?<br><br> Round the value to the nearest degree.
Elis [28]

Answer: m\angle C=53\°

Step-by-step explanation:

For this exercise you need to use the Inverse Trigonometric function arcsine, which is defined as the inverse function of the sine.

Then, to find an angle α, this is:

\alpha =arcsin(\frac{opposite}{hypotenuse})

In this case, you can identify that:

\alpha =m\angle C\\\\opposite=AB=36\ cm\\\\hypotenuse=AC=45\ cm

Then, substituting values into \alpha =arcsin(\frac{opposite}{hypotenuse}) and evaluating, you get that the measure of the angle "C" to the nearest degree, is:

m\angle C=arcsin(\frac{36\ cm}{45\ cm})\\\\m\angle C=53\°

5 0
3 years ago
Other questions:
  • Kurt deposited money into his bank account every month. The amount of money he deposited in the first 5 months of 2014 is listed
    15·2 answers
  • Find the tan of ∠T
    8·1 answer
  • A deep sea diver descended from a rock that is 45 feet below sea level to a coral reef that is 88 feet below sea level.How far d
    5·2 answers
  • This year Jack will be 2 years from being twice as old as your sister Jen. The sum of Jack's age and three times Jen's age is 66
    5·1 answer
  • How do you say 0.3 in words
    7·2 answers
  • Evaluate the value of a÷ ( b+c) when a= 51 , b= 15 &amp; c= 2 .
    14·1 answer
  • A(x)= -5x+ 8. Find a (7)
    7·2 answers
  • Please help!! Which two equations are the equations of vertical asymptotes of the function y = 5∕3 tan(3∕4x)?
    7·2 answers
  • 606 divided by 49 in long division ​
    7·2 answers
  • Evaluate the expression when x = -5.<br> x^2 + 9x-6
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!