Answer: A
Step-by-step explanation:
Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
Answer:
Step-by-step explanation:
Answer:
Tuesday and Friday
Step-by-step explanation:
Answer:
sorry is its complicated
Step-by-step explanation:
Find the components of the definition.
f
(
x
+
h
)
=
x
2
+
2
h
x
+
h
2
−
9
f
(
x
)
=
x
2
−
9
Plug in the components.
f
(
x
+
h
)
−
f
(
x
)
h
=
x
2
+
2
h
x
+
h
2
−
9
−
(
x
2
−
9
)
h