Let width be x so
Length is equal to x+6
Perimeter= 2(l+b)
So perimeter=2(x+x+6)
P=2(2x+6)
4x+12=64 (given)
Send 12 to the other side then,
4x=64-12=52
X=52/4=13
Answer:
Attachment 1 : 5x + 6y = 5, Attachment 2 : 4cotθcscθ
Step-by-step explanation:
Remember that we have three key points in solving these types of problems,
• x = r cos(θ)
• y = r sin(θ)
• x² + y² = r²
a ) For this first problem we need not apply the third equation.
( Multiply either side by 5 cos(θ) + 6 sin(θ) )
r
( 5 cos(θ) + 6 sin(θ) ) = 5,
( Distribute r )
5r cos(θ) + 6r sin(θ) = 5
( Substitute )
5x + 6y = 5 - the correct solution is option c
b ) We know that y² = 4x ⇒
r²sin²(θ) = 4r cos(θ),
r = 4cos(θ) / sin²(θ) = 4 cot(θ) csc(θ) = 4cotθcscθ - again the correct solution is option c
We have been given a graph of function g(x) which is a transformation of the function 
Now we have to find the equation of g(x)
Usually transformation involves shifting or stretching so we can use the graph to identify the transformation.
First you should check the graph of 
You will notice that it is always above x-axis (equation is x=0). Because x-axis acts as horizontal asymptote.
Now the given graph has asymptote at x=-2
which is just 2 unit down from the original asymptote x=0
so that means we need shift f(x), 2 unit down hence we get:

but that will disturb the y-intercept (0,1)
if we multiply
by 3 again then the y-intercept will remain (0,1)
Hence final equation for g(x) will be:

Answer:
0.216
Step-by-step explanation:
3/5^3 = 27
125
= 0.216