Answer:
<em><u>7</u></em><em><u>2</u></em><em><u> </u></em><em><u>yd²</u></em>
Step-by-step explanation:
area of this figure = area of 1st rectangle + area of 2nd rectangle
= l×b + L×B
= 6 × 5 + 14 × 3
=30 + 42
= 72 yd²
Answer:
11/8 or, 1 and 3/8
Step-by-step explanation:
First, we have to make both the denominators the same. In this case, we can multiply 3/4 by 2, to make 4, the denominator, into 8. What we do to the denominator, we must do to the numerator! So, we multiply 3 by 2, and get 6!
Now we have, 5/8 + 6/8, which equals 11/8! Which can also be simplified to 1 and 3/8 (because the numerator is larger than the denominator)
Hope this helps! :)
The points on the graph of the inverse variation are of the form:
(x, 8/x)
<h3>
Which ordered pairs are on the graph of the function?</h3>
An inverse variation function is written as:
y = k/x.
Here we know that k = 8.
y = 8/x
Then the points (x, y) on the graph of the function are of the form:
(x, 8/x).
So evaluating in different values of x, we can get different points on the graph:
- if x = 1, the point is (1, 8)
- if x = 2, the point is (2, 4)
- if x = 3, the point is (3, 8/3)
- if x = 4, the point is (4, 2)
And so on.
If you want to learn more about inverse variations:
brainly.com/question/6499629
#SPJ1
so we have the points of (0,-7),(7,-14),(-3,-19), let's plug those in the y = ax² + bx + c form, since we have three points, we'll plug each one once, thus a system of three variables, and then we'll solve it by substitution.

well, from the 1st equation, we know what "c" is already, so let's just plug that in the 2nd equation and solve for "b".

well, now let's plug that "b" into our 3rd equation and solve for "a".
![\bf -19=9a-3b-7\implies -12=9a-3b\implies -12=9a-3(-1-7a) \\\\\\ -12=9a+3+21a\implies -15=9a+21a\implies -15=30a \\\\\\ -\cfrac{15}{30}=a\implies \blacktriangleright -\cfrac{1}{2}=a \blacktriangleleft \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{and since we know that}}{-1-7a=b}\implies -1-7\left( -\cfrac{1}{2} \right)=b\implies -1+\cfrac{7}{2}=b\implies \blacktriangleright \cfrac{5}{2}=b \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill y=-\cfrac{1}{2}x^2+\cfrac{5}{2}x-7~\hfill](https://tex.z-dn.net/?f=%5Cbf%20-19%3D9a-3b-7%5Cimplies%20-12%3D9a-3b%5Cimplies%20-12%3D9a-3%28-1-7a%29%20%5C%5C%5C%5C%5C%5C%20-12%3D9a%2B3%2B21a%5Cimplies%20-15%3D9a%2B21a%5Cimplies%20-15%3D30a%20%5C%5C%5C%5C%5C%5C%20-%5Ccfrac%7B15%7D%7B30%7D%3Da%5Cimplies%20%5Cblacktriangleright%20-%5Ccfrac%7B1%7D%7B2%7D%3Da%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Band%20since%20we%20know%20that%7D%7D%7B-1-7a%3Db%7D%5Cimplies%20-1-7%5Cleft%28%20-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%3Db%5Cimplies%20-1%2B%5Ccfrac%7B7%7D%7B2%7D%3Db%5Cimplies%20%5Cblacktriangleright%20%5Ccfrac%7B5%7D%7B2%7D%3Db%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20y%3D-%5Ccfrac%7B1%7D%7B2%7Dx%5E2%2B%5Ccfrac%7B5%7D%7B2%7Dx-7~%5Chfill)
I think answer should be c. Please give me brainlest let me know if it’s correct or not okay thanks bye