Moles = mass/molar mass
moles = 2.3
molar mass = 278
=> mass = moles*molar mass = 639.4g
Answer:
Explanation:
Answer 1:
Lithium : 1s2 2s1 Fluorine: 1s2 2s2 2p5 Carbon: 1s2 2s2 2p2
Argon : 1s2 2s2 2p6 3s2 3p6 Sulphur: 1s2 2s2 2p6 3s2 3p4
Nickel: 1s2 2s2 2p6 3s2 3p6 3d8 4s2 Rubidium: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s1 Xenon: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6
Answer 2: A. Fluorine B. Calcium
C. It is Tellurium if this was the exact electronic configuration 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p4 you intend to write, if not, no element has such electonic configuration.
D. Bromine but the correct electronic configuration is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p5
Answer:
The correct appropriate will be Option 1 (Acid anhydrides are less stable than esters so the equilibrium favors the ester product.)
Explanation:
- Acid anhydride, instead of just a carboxyl group, is typically favored for esterification. The predominant theory would be that Anhydride acid is somewhat more volatile than acid. This is favored equilibrium changes more toward the right of the whole ester structure.
- Extremely responsive than carboxylic acid become acid anhydride as well as acyl chloride. Thus, for esterification, individuals were most favored.
The other options offered are not relevant to something like the scenario presented. So, the solution here is just the right one.
Answer:
water was added to powdered rock
Explanation:
Answer:
209.98 g of NaOH
Explanation:
We are given;
- Volume of HCl as 3 L
- Molarity of HCl as 1.75 M
We are required to calculate the mass of NaOH required to completely neutralize the acid given.
First, we write a balanced equation for the reaction between NaOH and HCl
That is;
NaOH + HCl → NaCl + H₂O
Second, we determine the number of moles of HCl
Number of moles = Molarity × Volume
= 1.75 M × 3 L
= 5.25 moles
Third, we use the mole ratio to determine the moles of NaOH
From the reaction,
1 mole of NaOH reacts with 1 mole of HCl
Therefore;
Moles of NaOH = Moles of HCl
= 5.25 moles
Fourth, we determine the mass of NaOH
Molar mass of NaOH = 39.997 g/mol
Mass of NaOH = 5.25 moles × 39.997 g/mol
= 209.98 g
Thus, 209.98 g of NaOH will completely neutralize 3L of 1.74 M HCl