- Quadratic Formula:
, with a = x^2 coefficient, b = x coefficient, and c = constant.
Firstly, starting with the y-intercept. To find the y-intercept, set the x variable to zero and solve as such:

<u>Your y-intercept is (0,-51).</u>
Next, using our equation plug the appropriate values into the quadratic formula:

Next, solve the multiplications and exponent:

Next, solve the addition:

Now, simplify the radical using the product rule of radicals as such:
- Product Rule of Radicals: √ab = √a × √b
√1224 = √12 × √102 = √2 × √6 × √6 × √17 = 6 × √2 × √17 = 6√34

Next, divide:

<u>The exact values of your x-intercepts are (-4 + √34, 0) and (-4 - √34, 0).</u>
Now to find the approximate values, solve this twice: once with the + symbol and once with the - symbol:

<u>The approximate values of your x-intercepts (rounded to the hundredths) are (1.83,0) and (-9.83,0).</u>
Repeating decimal is a decimal that repeats once divided...
And, a terminating decimal is a decimal that ends that is it has finite numbers
To find the equation of this line in slope-intercept form (y = mx + b, where m is its slope and b is its y-intercept), we naturally need the slope and the y-intercept. We can see that the line intersects the y-axis at the point (0, 4) so our y-intercept is 4, and the line rises 4 along the y-axis for every 2 it runs along the x-axis, so its slope is 4/2 = 2. With this in mind, we can write the line's equation as
y = 2x + 4
H(-2)=(-2)/2
h(-2)=-2
hope this helps!!!