Answer:
Find the value of x:-
To find Y, use Pythagorean theorem:- 




subtract 1.96 from both sides


Now, to find x:-



<u>~OAmalOHopeO</u>
Answer:
a < 16
Step-by-step explanation:
=(-4/5)^2 * -3/50
square -4/5 first; remember -4/5^2 is the same as -4/5 * -4/5
=(-4/5 * -4/5) * -3/50
multiply -4 numerators; multiply 5 denominators
=(-4 * -4)/(5 * 5) * -3/50
=16/25 * -3/50
multiply numerators 16 & -3; multiply denominators 25 & 50
=(16 * -3)/(25 * 50)
= -48/1250
simplify by 2
= -24/625 (or -0.0384)
ANSWER: -24/625 (or -0.0384)
Hope this helps! :)
Answer:
(2, 5)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y - 3x = 1
2y - x = 12
<u>Step 2: Rewrite Systems</u>
y - 3x = 1
- Add 3x on both sides: y = 3x + 1
<u>Step 3: Redefine Systems</u>
y = 3x + 1
2y - x = 12
<u>Step 4: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 2(3x + 1) - x = 12
- Distribute 2: 6x + 2 - x = 12
- Combine like terms: 5x + 2 = 12
- Isolate <em>x</em> term: 5x = 10
- Isolate <em>x</em>: x = 2
<u>Step 5: Solve for </u><em><u>y</u></em>
- Define equation: 2y - x = 12
- Substitute in <em>x</em>: 2y - 2 = 12
- Isolate <em>y </em>term: 2y = 10
- Isolate <em>y</em>: y = 5