You can simplify the fraction to get 2/5. If you convert this into a decimal you will get 0.4, so D is your answer.
After h hours, she will have traveled: 70h miles
Answer:
bisect each other.
Step-by-step explanation:
The midpoints are the same point, so the diagonals bisect each other.
__
<em>More elaboration on a proof</em>
The alternate interior angles formed by diagonals and the sides of the triangle are congruent, so the (point-to-point) triangles formed by the crossing diagonals are congruent ASA. Since the sides of those triangles are congruent, the diagonals meet at their midpoints. That is, the diagonals bisect each other.
Answer:
1) 
2) ![\sqrt[3]{y^5}=y^{\frac{5}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D%3Dy%5E%7B%5Cfrac%7B5%7D%7B3%7D)
3) ![\sqrt[5]{a^{12}}=a^{\frac{12}{5} }](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D%3Da%5E%7B%5Cfrac%7B12%7D%7B5%7D%20%7D)
4) ![\sqrt[4]{z^{9}}=z^\frac{9}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D%3Dz%5E%5Cfrac%7B9%7D%7B4%7D)
Step-by-step explanation:
1) 
We know that 
So, 
2) ![\sqrt[3]{y^5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D)
We know that ![\sqrt[3]{x}=x^{\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B3%7D)
So, ![\sqrt[3]{y^5}=y^{\frac{5}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D%3Dy%5E%7B%5Cfrac%7B5%7D%7B3%7D)
3) ![\sqrt[5]{a^{12}}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D)
We know that ![\sqrt[5]{x}=x^{\frac{1}{5}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B5%7D)
So, ![\sqrt[5]{a^{12}}=a^{\frac{12}{5} }](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D%3Da%5E%7B%5Cfrac%7B12%7D%7B5%7D%20%7D)
4) ![\sqrt[4]{z^{9}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D)
We know that ![\sqrt[4]{x}=x^{\frac{1}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B4%7D)
So, ![\sqrt[4]{z^{9}}=z^\frac{9}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D%3Dz%5E%5Cfrac%7B9%7D%7B4%7D)
Answer:
a) 18 in x 18 in x 18 in
b) 
Step-by-step explanation:
a) Let's call 's' the side of the square base and 'h' the height of the solid.
The surface area is given by the equation:

The volume of the solid is given by the equation:

From the volume equation, we have that:

Then, using this value of h in the surface area equation, we have:


To find the side length that gives the minimum surface area, we can find where the derivative of S in relation to s is zero:





The height of the solid is:

b) The minimum surface area is:

