I hope this helps you
-x+4=2x+1
4-1=2x+x
3=3x
x=1
y=-1+4
y=3
Answer:
![\large\boxed{3\div\dfrac{1}{3}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B3%5Cdiv%5Cdfrac%7B1%7D%7B3%7D%7D)
Step-by-step explanation:
1 has been divided into three equal parts. Each of these parts is 1/3. Let's calculate how many times 1/3 is in 3.
Answer:
proper because the numerator is lower than the denominator
Hi there!
![\boxed{= 70 + cos(12) - cos(2) \approx 71.26}](https://tex.z-dn.net/?f=%5Cboxed%7B%3D%2070%20%2B%20cos%2812%29%20-%20cos%282%29%20%5Capprox%2071.26%7D)
![\int\limits^{12}_{2} {x-sin(x)} \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B12%7D_%7B2%7D%20%7Bx-sin%28x%29%7D%20%5C%2C%20dx)
We can evaluate using the power rule and trig rules:
![\int x^n = \frac{x^{n+1}}{n+1}](https://tex.z-dn.net/?f=%5Cint%20x%5En%20%3D%20%5Cfrac%7Bx%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D)
![\int x = \frac{1}{2}x^{2}](https://tex.z-dn.net/?f=%5Cint%20x%20%3D%20%5Cfrac%7B1%7D%7B2%7Dx%5E%7B2%7D)
![\int -sin(x) = cos(x)](https://tex.z-dn.net/?f=%5Cint%20-sin%28x%29%20%3D%20cos%28x%29)
Therefore:
![\int\limits^{12}_{2} {x-sin(x)} \, dx = [\frac{1}{2}x^{2}+cos(x)]_{2}^{12}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B12%7D_%7B2%7D%20%7Bx-sin%28x%29%7D%20%5C%2C%20dx%20%3D%20%5B%5Cfrac%7B1%7D%7B2%7Dx%5E%7B2%7D%2Bcos%28x%29%5D_%7B2%7D%5E%7B12%7D)
Evaluate:
![(\frac{1}{2}(12^{2})+cos(12)) - (\frac{1}{2}(2^2)+cos(2))\\= (72 + cos(12)) - (2 + cos(2))\\\\= 70 + cos(12) - cos(2) \approx 71.26](https://tex.z-dn.net/?f=%28%5Cfrac%7B1%7D%7B2%7D%2812%5E%7B2%7D%29%2Bcos%2812%29%29%20-%20%28%5Cfrac%7B1%7D%7B2%7D%282%5E2%29%2Bcos%282%29%29%5C%5C%3D%20%2872%20%2B%20cos%2812%29%29%20-%20%282%20%2B%20cos%282%29%29%5C%5C%5C%5C%3D%2070%20%2B%20cos%2812%29%20-%20cos%282%29%20%5Capprox%2071.26)
Try A
I think this is right
Hope this helps you :)