Just substitute the coordinates
3x-2y=6
6x-4y=14
Simplifying equation II
3x-2y=7
Subtracting the simplified equation from equation1
0=-1
There is no solution.
(
3
x
3
2
y
3
x
2
y
−
1
2
)
−
2
(
3
x
3
2
y
3
x
2
y
-
1
2
)
-
2
Move
x
3
2
x
3
2
to the denominator using the negative exponent rule
b
n
=
1
b
−
n
b
n
=
1
b
-
n
.
⎛
⎝
3
y
3
x
2
y
−
1
2
x
−
3
2
⎞
⎠
−
2
(
3
y
3
x
2
y
-
1
2
x
-
3
2
)
-
2
Multiply
x
2
x
2
by
x
−
3
2
x
-
3
2
by adding the exponents.
Tap for more steps...
(
3
y
3
x
1
2
y
−
1
2
)
−
2
(
3
y
3
x
1
2
y
-
1
2
)
-
2
Move
y
−
1
2
y
-
1
2
to the numerator using the negative exponent rule
1
b
−
n
=
b
n
1
b
-
n
=
b
n
.
(
3
y
3
y
1
2
x
1
2
)
−
2
(
3
y
3
y
1
2
x
1
2
)
-
2
Multiply
y
3
y
3
by
y
1
2
y
1
2
by adding the exponents.
Tap for more steps...
⎛
⎝
3
y
7
2
x
1
2
⎞
⎠
−
2
(
3
y
7
2
x
1
2
)
-
2
Change the sign of the exponent by rewriting the base as its reciprocal.
⎛
⎝
x
1
2
3
y
7
2
⎞
⎠
2
(
x
1
2
3
y
7
2
)
2
Use the power rule
(
a
b
)
n
=
a
n
b
n
(
a
b
)
n
=
a
n
b
n
to distribute the exponent.
Tap for more steps...
(
x
1
2
)
2
3
2
(
y
7
2
)
2
(
x
1
2
)
2
3
2
(
y
7
2
)
2
Simplify the numerator.
Tap for more steps...
x
3
2
(
y
7
2
)
2
x
3
2
(
y
7
2
)
2
Simplify the denominator.
Tap for more steps...
x
9
y
7
Answer:
Step-by-step explanation:
a+b+c=0, a+b=-c,a+c=-b, b+c=-a
(a+b+c)^3=(a+b+c)^2*(a+b+c)=(a^2+b^2+c^2+2ab+2ac+2bc)*(a+b+c)=
a^3+ab^2+ac^2+2a^2b+2a^2c+2abc+a^2b+b^3+bc^2+2ab^2+2abc+2b^2c+a^2c+b^2c+c^3+2abc+2ac^2+2bc^2=a^3+b^3+c^3+3a^2b+3a^2c+3ac^2+3ab^2+3bc^2+3b^2c+6abc=
a^3+b^3+c^3+3a^2*(b+c)+3c^2(a+b)+3b^2(a+c)+6abc=
a^3+b^3+c^3+3a^2*(-a)+3c^2*(-c)+3b^2*(-b)+6abc=
a^3+b^3+c^3-3a^3-3c^3-3b^3+6abc=
6abc-2a^3-2b^3-2c^3=2(3abc-a^3-b^3-c^3)=
2*[3abc-(a^3+b^3+c^3)]=0
so 3abc-(a^3+b^3+c^3)=0
so a^3+b^3+c^3=3abc
Answer:
25p+45 < 480
Step-by-step explanation: