Answer:
It's 2, 1, and y = 2x + 1.
Step-by-step explanation:
You can see the rise is 2 and the run is 1, making the slope = 2, and the y-intercept is 1 because that is where it crosses the y axis. Once you have the slope and y intercept, you can put it in a function, with the form being y=2x+1, the slope being the number before the x and the y-int value being after the x.
Answer:
(a) 0.28347
(b) 0.36909
(c) 0.0039
(d) 0.9806
Step-by-step explanation:
Given information:
n=12
p = 20% = 0.2
q = 1-p = 1-0.2 = 0.8
Binomial formula:

(a) Exactly two will be drunken drivers.



Therefore, the probability that exactly two will be drunken drivers is 0.28347.
(b)Three or four will be drunken drivers.


Using binomial we get



Therefore, the probability that three or four will be drunken drivers is 0.3691.
(c)
At least 7 will be drunken drivers.

![P(x\leq 7)=1-[P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4)+P(x=5)+P(x=6)]](https://tex.z-dn.net/?f=P%28x%5Cleq%207%29%3D1-%5BP%28x%3D0%29%2BP%28x%3D1%29%2BP%28x%3D2%29%2BP%28x%3D3%29%2BP%28x%3D4%29%2BP%28x%3D5%29%2BP%28x%3D6%29%5D)
![P(x\leq 7)=1-[0.06872+0.20616+0.28347+0.23622+0.13288+0.05315+0.0155]](https://tex.z-dn.net/?f=P%28x%5Cleq%207%29%3D1-%5B0.06872%2B0.20616%2B0.28347%2B0.23622%2B0.13288%2B0.05315%2B0.0155%5D)
![P(x\leq 7)=1-[0.9961]](https://tex.z-dn.net/?f=P%28x%5Cleq%207%29%3D1-%5B0.9961%5D)

Therefore, the probability of at least 7 will be drunken drivers is 0.0039.
(d) At most 5 will be drunken drivers.



Therefore, the probability of at most 5 will be drunken drivers is 0.9806.
The answer is in my attachment
The answer is: 6/5
Here is why:
3x - 5y = -3
3(1) - 5y = -3
3 - 5y = -3
3 - 5(6/5) = -3
-3 = -3